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Kurzfassung

Diese Arbeit beschreibt Experimente, die erstmals einen lokalen Zugang zur mikrosko-
pischen Quanten-Vielteilchen-Physik ultrakalter atomarer Fermionen erlauben. Ein
Quantengas aus SLi Atomen wird n-situ mit zuvor nie erreichter Auflésung un-
tersucht, wodurch ein direkter Einblick in die charakteristischen Fluktuations- und
Korrelationseigenschaften des Systems gegeben ist. Auf derselben Langenskala von
einem Mikrometer wird mit flexibel formbaren optischen Dipolfallen zudem eine lo-
kale Manipulation erreicht. Wichtigstes Instrument fiir die gezeigten Experimente
bilden zwei identische hochauflésende Mikroskopobjektive, die das Kernstiick der im
Rahmen dieser Arbeit aufgebauten Apparatur darstellen.

Eines der beiden Mikroskopobjektive dient zur hochauflésenden Abbildung. Mit des-
sen Hilfe werden rdumlich aufgeloste Dichte- und Dichtefluktuationsprofile eines ge-
fangenen, schwach wechselwirkenden Fermi-Gases gemessen und analysiert. Fiir Quan-
tenentartung zeigt das Fermi-Gas unterdriickte Dichtefluktuationen unterhalb des
Niveaus fiir thermisches Schrotrauschen. Dahingegen wird im nicht entarteten Fall
thermisches, atomares Schrotrauschen beobachtet. Die gemessenen sub-Poisson’schen
Fluktuationen sind eine direkte Folge des Pauli-Prinzips und manifestieren damit fer-
mionisches Antibunching im Ortsraum. Zudem liefern die ortsaufgelosten Messungen
lokale Informationen iiber thermodynamische Eigenschaften des Systems, wie zum
Beispiel den Grad der Quantenentartung und die Kompressibilitdat. Gestutzt auf die
Aussagen des Fluktuations-Dissipations-Theorems wird eine neue fluktuationsbasier-
te Methode zur Temperaturmessung in atomaren Fermi-Gasen realisiert.

Dariiber hinaus stellen wir eine neuartige, quanten-limitierte Interferometrie-Methode
vor, die es ermdglicht Spinfluktuationen in einem gefangenen, zweikomponentigen
Fermi-Gas mit Mikrometerauflosung zu detektieren. Im Vergleich zu einem thermi-
schen Gas beobachten wir aufgrund des Pauli Prinzips eine Unterdriickung der Spinf-
luktuationen um 4.5dB fiir ein schwach wechselwirkendes, quantenentartetes Gas. Fiir
ein stark wechselwirkendes Gas aus Feshbach-Molekiilen messen wir bedingt durch
die Paarbildung von Atomen mit entgegengesetztem Spin eine Reduktion der Fluk-
tuationen um 9.2dB.

Mit Hilfe eines zweiachsigen akusto-opitschen Deflektors und der neuen hochauflo-
senden Optik werden mikroskopisch formbare optische Dipolpotentiale generiert. Die-
se umfassen sowohl statische als auch zeitgemittelte Fallenpotentiale in vielfaltigen



Geometrien. Wir prasentieren die Charakterisierung einer einzelnen, stark fokussier-
ten Dipolfalle und zeigen die Realisierung eines zweidimensionalen optischen Gitters
mit 4x4 Gitterplatzen und einer Ringgitterkonfiguration aus 8 Potentialtopfen. Zu-
dem demonstrieren wir das ortsaufgeloste Abbilden von kalten Atomen, die in diesen
projezierten optischen Potentiallandschaften eingeladen und gefangen werden.



Abstract

This thesis reports on experiments that provide for the first time a local access to the
microscopic quantum many-body physics of ultracold atomic fermions. A quantum
gas of SLi atoms is optically probed in-situ with unprecedented spatial resolution,
giving direct insight into the distinctive fluctuation and correlation properties of the
system. Likewise on the same length scale of one micrometer, local manipulation
is achieved by means of flexible confinement in optical dipole traps. The essential
tool for the presented experiments is a pair of identical, high-resolution microscope
objectives that constitute the key feature of the new apparatus which has been set
up in the scope of this PhD project.

Employing one of the two microscope objectives for high-resolution imaging, spa-
tially resolved density and density fluctuation profiles of a trapped, weakly interact-
ing Fermi gas are measured and analyzed. In the quantum degenerate regime, the
Fermi gas shows a suppression of the density fluctuations below the atomic shot noise
limit, whereas in the non-degenerate case thermal atomic shot noise is observed. The
measured sub-poissonian fluctuations are a direct result of the Pauli exclusion princi-
ple and represent an explicit manifestation of antibunching in real space. Moreover,
the spatially resolved measurements reveal local information about thermodynamic
quantities such as the level of quantum degeneracy and the compressibility. Using the
predictions of the fluctuation-dissipation theorem, a novel fluctuation-based method
for thermometry in atomic Fermi gases is realized.

A novel shot-noise limited interferometer is introduced enabling us to measure the spin
fluctuations in a trapped, two-component Fermi gas with a micrometer resolution.
Compared to a thermal gas, we observe a reduction of the spin fluctuations of up to
4.5dB for a weakly interacting quantum degenerate gas due to the Pauli principle,
and 9.2dB for a strongly interacting gas of Feshbach molecules due to pairing.

Using a two-axis acousto-optical deflector in combination with the microscope setup,
we demonstrate the generation of microscopically tailored optical dipole potentials.
Covering static as well as time-averaged potentials, versatile trapping geometries
are achieved, including a tightly focussed single optical dipole trap, a 4x4-site two-
dimensional optical lattice and a 8-site ring lattice configuration. Moreover, we
present the spatially resolved imaging of cold atoms residing in these optically pro-
jected potential patterns.
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1 Introduction

The study of quantum many-body physics has long since captured the interest of
physicists, most of which has been sparked by the serendipitous discovery of new
states and properties in the field of condensed matter physics. The emergence of phe-
nomena such as superfluidity, superconductivity, the Kondo effect or the fractional
quantum Hall effect, has stimulated the development of new conceptual frameworks
for our basic understanding of many-body physics. In all of these systems, the physics
is determined by fermionic particles whose complex collective behavior arises from
the intricate interplay of interparticle interactions and the Pauli exclusion princi-
ple. Gradually, new aspects of quantum many-body theory have spread far beyond
condensed matter physics, to nuclear and particle physics, and also cosmology.

Lately, a new research field related to condensed matter physics has started to ad-
dress fundamental concepts of many-body physics, but from a different perspective.
With the advent of ultracold atomic Fermi gases, flexible paradigm model systems
have become available that provide the unique opportunity to experimentally real-
ize and investigate quantum many-body physics in a very controlled way [1, 2]. In
contrast to solid state many-body systems, dilute gases of fermionic atoms - cooled
down to nanokelvin temperatures and confined in magnetic or optical traps - are
very pure and offer a large variety of experimentally tunable parameters, such as the
density, the temperature, and most notably the strength of interparticle interactions.
Yet, the research with quantum gases pursues a fundamentally different approach to
many-body physics. While in solid state physics observations triggered the search
for a theoretical explanation, experiments with ultracold atoms often revisit known
models and attempt to further explore emergent many-body phenomena therein. The
crossover between Bose-Einstein condensation and Bardeen-Cooper-Schrieffer super-
fluidity represents a prominent example, which currently is intensively studied in
strongly interacting Fermi gases [3]. Whether this approach - commonly referred
to as quantum simulation - may soon profoundly influence our further understand-
ing of quantum many-body physics is strongly dependent on practical experimental
methods to prepare, manipulate and probe these model systems. In particular, new
experimental techniques are needed to reveal sufficient details about strongly corre-
lated quantum phases in order to be able to verify and even anticipate theoretical
results. The desire for such novel tools sets the framework of this thesis.
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Currently, increasing experimental effort in the research field of ultracold atoms is di-
rected towards the development of tools to probe and manipulate quantum gases with
high spatial resolution [4, 5, 6, 7]. Access to the underlying physics at a microscopic
scale is now within reach. In this thesis, we present a new experimental apparatus
- featuring two high-resolution microscope objectives - that allowed us for the first
time to locally probe the distinctive many-body physics of an ultracold Fermi gas of
SLi atoms at the fundamental length scale of the Fermi wavelength.

A key concept of quantum many-body physics are correlations whose importance was
already highlighted by Nobel laureate J. Schwinger in a series of publications on the
theory of many-particle systems half a century ago: "The quantities that fully describe
the local behavior, and which thereby serve to characterize both the macroscopic and
the microscopic aspects of the situation, are time dependent field correlations, or, in
the language of field theory, Green’s functions." [8]. In general, correlations emerge
from the interplay of interparticle interactions and quantum statistics. In the case of
fermions, the quantum statistic is given by the Fermi-Dirac distribution [9, 10, 11], or
equivalently by the Pauli exclusion principle. One consequence of the Pauli exclusion
principle is that ordered phases in ultracold Fermi gases are not directly reflected in
the density or momentum profile of the atomic cloud. Hence, e.g. superfluidity of
paired fermions in the BEC-BCS crossover does not become apparent as a coherence
peak in the density profile [12], in contrast to the bosonic case, where the condensed
fraction is discernible by its low momentum. [13, 14].

Most fundamentally, quantum mechanically induced correlations between the con-
stituents of a many-body system manifest themselves in the noise properties of the
system. Here, noise refers to the distinctive fluctuations of a physical observable such
as the particle number or the magnetization. For a few years, the correlation induced
noise properties of quantum gases have become the subject of many theoretical in-
vestigations, covering both bosonic and fermionic systems [12, 15, 16]. Meanwhile,
correlations in systems of ultracold quantum gases have also been addressed exper-
imentally. Very different approaches have been pursued which partly accessed the
intrinsic correlations via the noise properties of the system, but nearly all rely on
techniques to probe the quantum correlations indirectly, i.e. to globally map the mi-
croscopic correlation effects onto macroscopic observables. Such probing techniques
include for example Hanbury Brown-Twiss-like experiments to reveal bunching and
antibunching effects of bosonic and fermionic atoms respectively [17, 18, 19, 20], dis-
sociation of atom pairs to detect the pair correlations of weakly bound molecules in
time of flight experiments [21], measurements of the double occupancy in a 3D opti-
cal lattice to probe nearest-neighbor correlations in the fermionic Mott insulator [22],
and Bragg spectroscopy in strongly interacting Fermi gases to measure the static
structure factor which corresponds to the Fourier transform of the pair correlation
function in real space [23, 24, 25].

So far, only few experiments have focussed on the direct in-situ measurement of corre-
lations in atomic quantum gases, currently restricted to Bose gases in low dimensions
only [26, 27, 28], while corresponding measurements of correlations in Fermi gases
remain elusive. A closer look at the distinctive correlations of a Fermi gas, such as



density-density correlations, shows that their smallest fundamental length scale is
given by the Fermi wavelength Ap [29]. In ultracold Fermi gases, Ar is typically of
the order of one micrometer, which is in principle accessible by optical means but
places high demands on the spatial resolution for the in-situ probing technique.

Within the scope of this thesis we set up a new experimental apparatus that offers the
unprecedented opportunity to access the physics of strongly correlated Fermi gases
at a microscopic scale length. Employing a high-resolution microscope imaging setup
with a maximum resolution of 660 nm, we demonstrate the in-situ measurement of
density fluctuations in a weakly interacting Fermi gas of trapped 6Li atoms. The
observed sub-Poissonian density fluctuations for a quantum degenerate gas provides
the first direct manifestation of fermionic antibunching in real space, a textbook
proof of the most fundamental particle correlations present in a fermionic system.
Due to the high spatial resolution this measurement also constitutes a local probe of
quantum degeneracy in the trapped Fermi gas. In thermal equilibrium, the density
fluctuations are universally linked to the thermodynamic properties of the gas via the
fluctuation-dissipation theorem. Using this relation, we demonstrate a novel type of
fluctuation-based thermometry universally applicable to quantum gases.

In a complementary approach we have developed a novel method for an interfero-
metric measurement of the magnetization in a Fermi gas. It allows to implement a
recently proposed concept to characterize the strong correlations in the ground-state
of an interacting many-body systems [30]. The method combines the two decisive
benefits given by the shot noise limited precision of interferometric measurements
on the one hand, and the high spatial resolution of our microscope setup on the
other hand. With this we were able to locally measure the spin fluctuations in a
trapped, two-component Fermi gas. In comparison to a thermal gas, we observe a
strong suppression of spin-fluctuations due to the Pauli principle in a weakly inter-
acting, quantum degenerate cloud. In addition, we find an even more pronounced
spin squeezing effect in a strongly interacting gas due to the formation of molecules.

Besides the detection of correlations, another pending challenge concerns the mi-
croscopic manipulation and preparation of atomic quantum gas. In addition to the
tunability of the interaction strength with so-called Feshbach resonances, the high
level of controllability on these systems also relies on versatile tools to manipulate
the confinement and thus the external degree of freedom. For this, optical dipole
traps [31] offer a huge variety of applications. In particular, the use of optical lat-
tices - artificial crystals of light formed at the intersection of three standing light
waves - established an entire new research field, also allowing to access the strongly
interacting regime [32, 33]. Currently, experiments with ultracold fermions or bosons
in optical lattice pursue a novel route to emulate fundamental model Hamiltonians
of condensed matter physics. More precisely, these systems constitute an almost
ideal experimental realization of the Hubbard model with highly tunable parame-
ters [34, 35]. Very recently, even single site resolution imaging has been achieved
for bosonic systems [36, 37, 7]. However, the concept of optical lattices is by design
restricted to the investigation of periodic systems with a high degree of symmetry. In
this thesis, we reach out for an extension of optical potentials towards more flexible
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trapping geometries. With the help of a second high-resolution microscope objec-
tive, we demonstrate the generation of versatile optical dipole potentials that can be
shaped down to length scales well below one micrometer. Moreover, we show the
ability to load and detect a small number of cold fermionic atoms in these trapping
potentials.

Review on the recent experimental research with ultracold fermions

For more than ten years, ultracold atomic Fermi gases have been enjoying ever in-
creasing attention, and are currently studied in a broad spectrum of experiments
at the forefront of atomic physics. Four years after the first experimental realiza-
tion of atomic Bose-Einstein condensation in 1995 [13, 14], the onset of quantum
degeneracy in an atomic Fermi gas was observed for the first time in a magnetically
trapped sample of evaporatively cooled 4°K atoms [38]. Here, the Pauli principle
posed a natural barrier for further cooling since collisions between identical fermions
of the same spin are strongly suppressed at this low temperatures. Two years later,
deeper degeneracies could be achieved via sympathetic cooling in the presence of
bosonic species, thereby reaching relative temperatures of the order of 20 percent of
the Fermi temperature [39, 40, 41, 42].

Around the same time, the development of optical dipole traps had already achieved
great success, providing a very versatile alternative to magnetic trapping poten-
tials [31]. Consequently, the first all-optical preparation of a quantum degenerate
Fermi gas was demonstrated in 2002 [43]. In particular, optical traps offer the very
positive side effect of liberating the atomic spin degree of freedom since any spin
states can be trapped. In turn, this enabled the employment of external magnetic
fields to tune the interaction properties between different spin states by means of so-
called magnetic Feshbach resonances [44]. For the fermionic isotope 6Li, theoretical
calculations [45] predicted the existence of a broad Feshbach for the s-wave scat-
tering length between the two lowest spin states of the hyperfine ground state [46],
whose exact position was experimentally located around a magnetic field of about
840 G [47, 48]. Henceforth, Feshbach resonances have turned out to be an extremely
useful tool in cold atom experiments as they allow to precisely control the interac-
tion strength of two colliding particles from zero to nearly any attractive or repulsive
value. Among other properties, this tunability of the interaction strength founds
the current experimental appeal of ultracold quantum gases. Most of all, Feshbach
resonances finally paved the way to enter the regime of strong interactions and thus
strong correlations, which apart from experiments with optical lattices had not been
accessible so far.

Shortly after the first advance towards strongly interacting atomic Fermi gases [49],
experiments with fermions - most of them working with SLi - started to explore the
twofold pairing behavior for attractive and repulsive interparticle interaction respec-
tively. In the case of repulsive interactions between two particles of opposite spin,
a bound state emerges supporting the formation of weakly bound dimers. Though
the constituents are fermions, the dimers themselves are of bosonic nature, for which
the phase transition into a molecular Bose-Einstein condensate (BEC) was demon-



strated by three different groups in quick succession [50, 51, 52]. On the other hand,
for attractive interactions the system favors a Cooper pair like state similar to that
known from the Bardeen-Cooper-Schrieffer (BCS) theory of superconductors [53]. In
contrast to the BEC regime, the BCS regime is governed by genuine many-body
physics. As a unique opportunity offered by cold samples of 6Li and 49K atoms, the
Feshbach resonance connects both regimes. Exploiting this, a considerable number
of outstanding experiments studied the pairing behavior in this so-called BEC-BCS
crossover that encompasses a unitarity limited interaction regime around the reso-
nance, where the scattering length diverges [54, 55, 56, 57, 58, 59, 60]. Pairing of
fermions is a prerequisite condition for superfluidity which was expected to occur
throughout the entire crossover regime, but whose experimental emergence in atomic
Fermi gases remained elusive for a long time. Finally, the observation of long-lived,
ordered vortex lattices in a rotating balanced Fermi mixture provided the convincing
evidence for superfluidity [61]. In addition, both experimentalists and theorists in-
vestigated the question to which extent superfluidity can be sustained in imbalanced
Fermi mixtures, i.e. for unequal atom numbers in both spin components. Measure-
ments revealed a breakdown of superfluidity beyond a critical imbalance, the Clogston
limit, and the sample was found to separate into a core region of equal densities, sur-
rounded by a shell at unequal densities [62, 63, 64, 65, 66]. Currently, an open issue
about the existence of a pseudo-gap phase in the unitarity regime of strong inter-
actions is controversially discussed. A recent experiment found evidence that pair
formation - according to conventional BCS theory occurring in coincidence with su-
perfluidity - may already appear above the critical temperature for the superfluid
phase transition [67]. The unitarity regime between the two well-understood limiting
situations of BEC and BCS is of special interest because there the interaction reaches
the maximum allowed value and the Fermi energy sets the only relevant energy scale.
By nature, any other unitarity limited Fermi system, such as neutron stars, shares
the same universal thermodynamic properties, and very recently, experiments and
theory have started to explore the universal thermodynamics of strongly interaction
systems [68, 69, 70, 71]. Hence, this link given by universality nicely demonstrates
how highly controllable atomic Fermi gases may reveal details about other unitary
Fermi systems.

Clearly, the exploration of many-body physics using ultracold quantum gases contin-
ues to gain momentum. In general, the experimental research now progresses towards
gaining more quantitative insights into the underlying physics of the very intriguing
regimes described above. As we have seen, the related phenomena are driven by pair
formation and are characterized by spin correlations, which typically vary in space.
The new apparatus presented in this thesis offers for the first time the ability to ob-
serve those effects on their relevant length scales, and thus may contribute to reach
the next step towards a more quantitative understanding.
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Outline of this thesis

The work presented in this thesis was carried out in close collaboration with Bruno
Zimmermann, Jakob Meineke, Henning Moritz, Jean-Philipp Brantut, and David
Stadler.

¢ The second chapter introduces the theoretical framework for the description of
ultracold atomic Fermi gases, including the physics of low temperature interac-
tions. The main part of this chapter focusses on the relation between quantum
statistics, density fluctuations, correlations and thermodynamic properties of a
Fermi system.

e In the third chapter, the design of our new apparatus is presented which was
set up during the first two years of this thesis. Besides a detailed description
of all relevant components, we also discuss the experimental sequence used to
produce a quantum degenerate Fermi gas of 6Li atoms.

e The fourth chapter is devoted to the key feature of our apparatus, the high-
resolution optical setup aiming at the microscopic probing and manipulation of
ultracold fermions. We first discuss the technical details of the two microscope
objectives which represent the core part of the optical setup. Subsequently,
we characterize the performance of the high-resolution imaging system that
employs one of the two microscopes.

e The preparation of ultracold fermions in microscopically tailored optical dipole
potentials is subject of the fifth chapter. Using the second microscope objec-
tive and an acousto-optical deflector, we demonstrate the generation of various
micro-trap configurations. Moreover, we show the single-site resolved imaging
of ultracold fermions populating the micro-traps arrays.

e In the sixth chapter, we present a textbook experiment on the local observation
of antibunching in a trapped Fermi gas, constituting a local probe of quan-
tum degeneracy. We analyze the measured density fluctuations in the frame-
work of the fluctuation-dissipation theorem and provide a promising route for
fluctuation-based temperature measurements in Fermi gases.

e The seventh chapter reports on the in-situ measurement of spin-fluctuations in
a weakly and strongly interacting two-component Fermi gas. For this measure-
ment, we have developed a novel shot-noise limited interferometric technique
with high spatial resolution that allows us to characterize distinctive correla-
tions of the quantum gas in a spatially localized region.



2 Quantum degenerate Fermi gases

The system under investigation throughout this thesis is an ultracold Fermi gas of SLi
atoms confined in an optical dipole trap. As we will derive in the following chapter,
the ground state of such an ensemble in the absence of interaction effectively real-
izes the textbook example of the ideal Fermi gas. Including interactions, the ground
state of the system changes dramatically and the spin degree of freedom plays an
important role. In a two-component Fermi gas, already small attraction between
particles of different spin may cause the formation of atomic Cooper pairs which
are able to condense into a superfluid below a critical temperature. This superfluid
state of neutral particles directly corresponds to the many-body state of electronic
Cooper pairs in solid state superconductors, both of which are well described by the
Bardeen-Cooper-Schrieffer (BCS) theory [53]. On the other hand, for repulsive inter-
actions two particles can form a bound state of molecular dimers, which can undergo
a phase transition into a Bose-Einstein condensate (BEC) of molecules. What is
most exciting about ultracold atomic quantum gases is the capability to precisely
control the interparticle interaction by means of so-called Feshbach resonances. By
this, the scattering length between two colliding particles can be tuned from zero to
any arbitrary large attractive or repulsive interaction, which finally allowed experi-
ments on ultracold Fermi gases to enter the regime of strongly correlated many-body
physics. Resuming the argumentation of the introduction, quantum mechanically in-
duced correlations emerge from the interplay of quantum statistics and interactions,
and manifest themselves in distinctive fluctuations of physical observables, such as
the particle number or the magnetization. Measurements of such fluctuations are
becoming increasingly important as they provide direct access to key quantities that
characterize the many-body system.

In the following chapter, we discuss the theoretical framework of ultracold atomic
Fermi gases. Starting with the description of an ideal Fermi gas, we subsequently
summarize the physics of collision-based interactions and the concept of Feshbach
resonances in ultracold quantum gases. Based on that, we discuss the different in-
teraction regimes and related phenomena of the so-called BEC-BCS crossover. For
further reading, we refer to the textbooks [72, 73] and to the detailed review article [3]
which provide an excellent introduction to this field. The main part of this chapter
focusses on the quantum statistics and thermodynamic properties of Fermi systems.



2. QUANTUM DEGENERATE FERMI GASES

Thereby, we place strong emphasis on the role of density fluctuations and particle
correlations.

2.1 Degenerate fermions

In the classical limit at high temperatures, the constituents of a dilute atomic gas can
be considered as distinguishable, point-like particles. However, the situation changes
for low temperatures. As as soon as the thermal deBroglie wavelength A\gg becomes
comparable to the mean interparticle separation, i.e. when the wave packets of in-
dividual particles start to overlap, the statistics of the gas is governed by quantum
mechanics: identical particles become indistinguishable and the intrinsic angular mo-
mentum, the spin, starts to play a dominant role. At this point, the underlying
quantum statistics leads to fundamental differences depending on whether the par-
ticles are bosons (particles with integer spin) or fermions (particles with half-integer
spin). Fig. 2.1 qualitatively depicts the different behavior of bosons and fermions
trapped in a harmonic potential. When the gas is cooled below quantum degeneracy,
bosons condense into the ground state of the trap, thereby undergoing the phase
transition to a Bose-Einstein condensate (BEC). In contrast, fermions obey the Pauli
exclusion principle which prohibits two identical fermions to occupy the same quan-
tum state. According to this, fermions start to fill up the lowest lying states of the
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Fig. 2.1: Cooling a gas of identical particles down to quantum degeneracy
causes the point-like character of distinguishable particles to fade out and their
wave-like nature to show up. When the thermal deBroglie wavelength Agp
reaches the order of the interparticle separation, the specific particle statistics
becomes important and leads to contrary situations for bosons and fermions.
Bosons start to condense into a single quantum state, the ground state of the
trap. In contrast, fermions start to fill up the lowest lying trapping states
due to the Pauli principle, which causes them to avoid each other. At zero
temperature, the Bose gas is fully condensed, all particles behave coherently
and are described by a single wave function. On the other hand, fermions fill
the energy levels of the trap from the bottom to the Fermi energy with unity
occupation.
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trap with unity occupation, thereby forming a Fermi sea at temperatures below the
Fermi temperature. Experimentally, both situations, the BEC and the quantum de-
generate Fermi gas, have been successfully realized with ultracold atoms [13, 14, 38]
and are the starting point of many intriguing experiments worldwide.

2.1.1 Non-interacting trapped Fermi gas

At very low temperatures, interactions between two fermions in the same internal
state are essentially absent because the only relevant scattering process, s-wave scat-
tering, is suppressed by the Pauli principle (see section 2.2). Therefore, in first ap-
proximation, the properties of an ultracold atomic quantum gas consisting of single-
component fermions can be derived by treating the particles as non-interacting and
the ensemble as the textbook example of an ideal Fermi gas. In the following we
consider the atoms to be confined in a trapping potential Virap(r). Although the
trap isolates the gas from an external reservoir, it is convenient to study the system
in the grand canonical ensemble, i.e. in terms of the temperature 7" and the chemical
potential . At thermal equilibrium, the mean occupation number of a phase space
cell is given by the Fermi distribution function [74]

1

B+ Virap (1)) /(T | 1

fr(r,p,T) = (2.1)

where r and p are position and momentum of a particle with mass m, and kg is the
Boltzmann constant. The chemical potential y is determined by the total number of
atoms N via the constraint that the integration of (2.1) over the full real space V/
and momentum space P corresponds to the total atom number:

N=//fp(r,p,T)dp3dr3. (2.2)
pJv

In general, the chemical potential 1 depends on temperature. At zero temperature,
it becomes by definition the Fermi energy Ew, which corresponds to the energy of
the highest occupied state in the trap. In many experimental situations, the trapping
potential for ultracold atoms can be assumed to be an anisotropic harmonic oscillator
potential with oscillation frequencies wy,y, . along the principal axes x, y and z,

1
Virap (1) = om (wiaj +wly® + wﬁzQ) . (2.3)

The system is then described by the Hamiltonian H = = (p2 + ﬁg + 92) + Virap (),
and for a given total atom number N, the integration of (2.2) at T = 0 yields the
Fermi energy

Ep = kgTr = hw(6N)Y/3. (2.4)
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Here, @ = (wywyws)'/3 is the mean oscillation frequency. Equation (2.4) also defines
the Fermi temperature Tg which marks the crossover to the degenerate Fermi gas,
when the mean occupation number in the center of the trap approaches unity.

The density distribution of a trapped cloud of fermions in its ground state is obtained
in the Thomas-Fermi approximation. In this semi-classical approximation, the kinetic
energy in the Hamiltonian H is considered to be much smaller than the trapping po-
tential, and therefore it is neglected. Hence, the properties of the gas at a certain point
r are assumed to match those of a uniform gas with a density equal to the local den-
sity n(r). Finally, the integration of (2.1) over momenta |p| < 1/2m(Ep — Virap(r))
gives

m 3/2
n(r, T =0) = o (2 = Virap(0)]) - (2.5)

At zero temperature, the condition V(Rrp,;) = p = Ep determines the maximum
extensions of the cloud, denoted as Thomas-Fermi radii Ryp,; = /2u/(mw?). With
these, the total number of 2Particles is obtained by integrating the density over the
volume of the cloud N = Z-n(r = 0)Re Ry R:. In addition, the local density n(r) is
related to the local Fermi wave number via

k(1) = (67°n(r))!/3. (2.6)

This relation shows that the wave number is maximum at the trap center, and more-
over of the order of the average interparticle separation, as in a homogeneous gas.
While the density distribution can be anisotropic, the momentum distribution of a
non-interacting Fermi gas is always isotropic, independent of the trapping poten-
tial. This is a consequence of the isotropy of the single-particle kinetic energy in
momentum space.

At finite temperature, 0 < T < T, the density distribution is mainly modified only

at the wings of the cloud. Here, the integration of (2.1) over momentum results in a
polylogarithm function

-1 s__ L . ((N,T)=V (r))/(kpT)
n(r,T) = W/Pf(rvpﬂ T)dp” = —@Lzsm (—6 a TIIE ) , (27)

where Lin(z) = 2;0:1 2% /k™ is the n''-order polylogarithm function and A\gp =

73272271 is the thermal deBroglie wavelength.

In the experiment, the temperature of the atomic Fermi gas can be determined from
the analytic form of the density distribution (see e.g. section 6.4). Releasing the
trapped cloud from the confining potential leads to a free ballistic expansion for the
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non-interacting particles. Thereby, the distinctive shape of the density distribution
remains unchanged over a certain time of flight (TOF). The expanded cloud is fi-
nally imaged by means of absorption imaging onto a charged coupled device (CCD)
camera, which records the integrated two-dimensional column density distribution.
Analytical scaling expressions, which depend on the underlying trapping potential,
allow to relate the experimentally accessible column density back to the in-trap three-
dimensional density distribution. Fitting an appropriate function to the expanded
density distribution yields the fugacity z = e*/(*8T)  the only remaining parameter
which determines the ratio 7//Tg. For a harmonic trapping potential (2.3), the cor-
responding relation between the fugacity and the relative temperature is derived by
integration and re-arrangement of equation (2.2) for 7' > 0,

T/Tp = (—6Li3(—2))" /3 . (2.8)

In chapter 6 we will refer back to these equations when reporting on the observation
of density fluctuations in a nearly non-interacting Fermi gas.

2.2 Interactions in an ultracold quantum gas

While a non-interacting Fermi gas impresses by its simplicity, many exciting phenom-
ena of fermionic systems, like superfluidity or superconductivity, rely on the presence
of interactions. It is a unique attribute of ultracold quantum gases that the proper-
ties of the interparticle interactions can be precisely adjusted via so-called Feshbach
resonances. This high level of control plays an important role in every stage of our
experiment: interactions between different spin states are indispensable not only for
evaporative cooling of an atomic Fermi gas below quantum degeneracy, but also for
the formation of weakly bound dimers [75, 76] which can be cooled into a molecular
Bose-Einstein condensate [50, 51, 52]. In addition, Feshbach resonances open the
way to tune atomic Fermi gases into regimes of arbitrarily attractive and repulsive
interactions which eventually triggered the experimental exploration of the crossover
between Bose-Einstein condensation of tightly bound molecules and the superfluid
BCS-like state of weakly bound Cooper pairs [54, 57, 58, 61, 63]. In this section, we
shortly summarize the basic concepts of scattering and interactions in ultracold quan-
tum gases as well as the mechanism of Feshbach resonances. A detailed description
of low energy collision physics can be found in [46, 77]. A comprehensive description
of Feshbach resonances is given by [44, 78].

2.2.1 Elastic scattering

Interactions in quantum gases are mediated by scattering processes which take place
in a Lennard-Jones potential Vicat(7) as illustrated in Fig. 2.2(a). The specific shape
of the potential is caused by the strong repulsion of the overlapping electron clouds at
short distances and the van der Waals interaction oc T% at long distances. In quantum
mechanics, the solution for the elastic scattering of two particles in the center of mass

11
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frame is expressed by an incoming plane wave with momentum k£ and an outgoing
spherical wave whose amplitude is modulated by the scattering amplitude [46]. For
large distances it reads

(6, r) ~ expikz + f(0, k)M .

(2.9)
All the physics is contained in the scattering amplitude f(0, k) which depends on the
incident scattering energy Fg o k2 and the scattering angle § between the incoming
particle and the observation direction. The integration of f(6, k) over the solid angle
yields the total scattering cross section. Since the scattering potential is spherical
symmetric, the wave function (2.9) can be expanded in partial waves, which them-
selves separate into a radial term Ry (r) and an angular term f;(6,k) o k2! with a
quantized angular momentum [. The effect of scattering is to add an extra phase §;
to each partial wave. In the low energy limit of ultracold temperatures, the scatter-
ing energy is very small (Eg ~ 0), and therefore only the lowest angular momentum
[ = 0 has to be considered. Hence, the isotropic s-wave scattering is the only relevant
contribution, and the amplitude fy sufficiently describes the full scattering process.
An important conclusion of this is that for low temperatures identical fermions do
not collide due to the requisite anti-symmetric shape of the total wave function.
Thus, identical fermions form an ideal Fermi gas (see previous section), and scatter-
ing of fermions at low temperatures only occurs between particles in different spin
states. It can be shown that fo is related to the background scattering length ayg
via —fo = apg = do/k. The exact value of the scattering length ay, depends on the
scattering potential. If the interatomic scattering potential is deep enough to support
a bound state just below the threshold with a binding energy Egp, the backgrognd
R

scattering length ayg is positive and the binding energy is given by Ep = —
bg

When the bound state approaches the continuum, the scattering length gets larger
and finally diverges when the bound state coincides with the continuum. Vice versa,
just above the continuum one can find a quasi-bound state, and ay,; becomes negative.

2.2.2 Feshbach resonances

For a given interatomic scattering potential, the background scattering length apg is
constant. However, a Feshbach resonance, a phenomenon first discussed in the field
of nuclear physics [79], allows to tune the scattering length a of an atomic quantum
gas to any repulsive (a > 0) or attractive (a < 0) value by applying an external
magnetic field. In the following section, we discuss the nature of Feshbach resonances
using the example of the broad Feshbach resonance between the two lowest hyperfine
sub-states of 6Li at 834 G. Above a homogeneous magnetic field of 140 G, the Zeeman
level structure of 6Li enters the Paschen-Back regime where the two lowest spin states
|1) and |2) (see appendix B.3) show the same electronic spin ms = —%. An incoherent
mixture of colliding atoms in these two states thus interacts via a triplet scattering
potential which is called the open channel and is characterized by the background
scattering length apg (see Fig. 2.2(a)). In principle, scattering of ultracold atoms

is a multi-channel process due to different available hyperfine states. However, the
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scattering potential corresponding to the singlet scattering state of °Li, in which the
electron spins of two colliding atoms have opposite quantum numbers ms = :i:%,
is not available for the incident atoms since the scattering continuum of the singlet
state is higher in energy than the continuum of the triplet state (see Fig. 2.2(a)).
The singlet state is therefore called a closed channel. Atoms scattering in the open
channel may however couple to the closed channel, for example via hyperfine coupling.
A Feshbach resonance occurs when the collision energy of the two colliding atoms in
the open channel is close to the energy of the bound state of the closed channel. Owing
to enhanced second order processes during the collision, the two atoms can virtually
occupy the bound state of the closed channel, which modifies the scattering phase
shift and thus influences the value of the scattering length a in the open channel.

Since the triplet and singlet scattering states have different magnetic moments (Ay =
Msgl — Mtri), One can use a homogeneous magnetic field B to tune the two potential
curves with respect to each other. Due to the coupling to the bound state in the closed
channel, as described above and illustrated in Fig. 2.2(b), the scattering length a of
the open channel thereby changes from negative to positive values and diverges to
+o00 on both sides of the resonance.

The B-field dependence of the scattering length in the vicinity of the broad (open
channel dominated) Feshbach resonance between 600 G and 1200 G is well described

GY (b)

bound state %
closed channel \‘ % -
I Au-B )

Fig. 2.2: (a) Scattering potentials of two colliding atoms in a spin-triplet (red)
and spin-singlet (blue) configuration, which are denoted as open and closed
channel respectively. The bound states in the closed channel can be tuned
relative to the continuum of the open channel. A Feshbach resonance occurs
when a bound state of the closed channel becomes energetically resonant to
the incident energy of the colliding particles entering the open channel at the
continuum threshold. (b) Resonant behavior of the scattering length a (orange
line) as function of the magnetic field B which tunes the relative position

energy

open channel

incident energy

energy E,

interatomic distance

of the bound state. The insets illustrate qualitatively the relative scaling of
the scattering potentials. At By, the scattering length diverges. Above the
resonance, the scattering length is negative (attractive interaction), whereas
below the resonance it becomes positive (repulsive interaction). There, a bound
state exists, whose binding energy is plotted as blue dotted line.
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by [47, 80]

a = apg (1+BA7120) (1+ a(B - Bo)), (2.10)

where Bg marks the center position and AB denotes the width of the Feshbach
resonance. The numerical parameters for 6Li read apg = —1405a9, Bg = 834.15G,
AB = 300G and o = 0.040kG~! [47, 48]. Here, ag corresponds to the Bohr radius.
In Fig. 2.3, the scaling of the scattering length between the two lowest spin states of
6Li is plotted over a larger range of the magnetic field B, from 0G to 1500 G.

Above the resonance, no real bound state exists and the scattering length is negative.
For large magnetic fields, a saturates at a large off-resonant background scattering
length of apg = —2000 ap, which originates from a virtual bound state just above the
scattering continuum of the open channel. On resonance, the bound state crosses
the continuum of the open channel and the scattering is resonantly enhanced, sub-
sequently changing the sign. Below the resonance, the bound molecular state is
energetically below the continuum of the open channel (see Fig. 2.2(b)), and a result-
ing bound eigenstate evolves whose B-field dependent binding energy Ep is plotted
as blue dotted line in Fig. 2.2(a). In analogy to the avoided crossing in a two level
system, the resulting bound state is connected adiabatically to the free-atom contin-
uum when the closed channel is tuned into the continuum. Thus, by adiabatically
ramping the magnetic field across the resonance, pairs of atoms can be converted into
molecules [76]. The reverse process dissociates the dimers. However, the bound state
stems from the coupled system, and the formed molecules are a coherent superposi-
tion of the bound molecule in the closed channel and a long-range atom pair in the
open channel.
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Fig. 2.3: Scattering length a between the two lowest hyperfine sub-states of
SLi across a magnetically tuned Feshbach resonance. The plotted data rely
on a coupled-channel calculation [81]. The position of the broad Feshbach
resonance was experimentally determined to be located at B = 834 G [47, 48].
The scattering length a is given in units of the Bohr radius ag.
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Apart from the broad Feshbach resonance between the two lowest spin states of
61i at B = 834G, there also exists another very narrow (AB = 0.1 G) Feshbach
resonance at B = 543 G for the same states (not shown in Fig. 2.3). Moreover, at
B = 527G [82], there is a zero-crossing of the scattering length a, which enables
the realization of a non-interacting Fermi gas in our experiments. For even lower
magnetic fields, the scattering length further decreases to a local minimum of about
—300ap at B ~ 325 G, and subsequently smoothly increases to zero at zero magnetic
field (see Fig. 2.3).

2.2.3 BEC-BCS crossover

The unique possibility to tune the interactions in ultracold Fermi gases opened the
path to experimentally address a long-standing problem in many-body physics: As
proposed by Eagles [83] in 1969 and finally shown by Leggett [84] in 1980, there exists
a smooth crossover of a superfluid system from the Bose-Einstein condensate regime of
tightly bound molecules into the Bardeen Cooper Schrieffer (BCS) regime of weakly
bound Cooper pairs. In this section we summarize the basic phenomena related
to this crossover as it appears in a strongly interacting gas of ultracold SLi atoms.
There, both regimes are smoothly connected due to the variable interaction strength
across the Feshbach resonance. Theory-wise, the crossover can be parameterized
by the dimensionless quantity 1/kp a, where kp is the Fermi momentum and a the
scattering length. To give an intuitive picture of how the entire crossover regime was
covered for the first time in a single quantum system [55, 59, 85, 56, 54, 86], we first
consider the two limiting cases of BEC (1/kpa > 1) and BCS (1/kra > —1) in an
interacting Fermi gas. Here, the nature of pairing is the key element for the further
understanding how the many-body state evolves from two-body pairing in real space
(BEC) to Cooper pairing in momentum space (BCS). In between (1/kp a < 1), the
quantum gas is strongly interacting and limited by unitarity, i.e. independent of
any particularities of the interaction properties. For weak interactions, both limiting
cases can be described in the framework of well-established theory. However, for
strong interactions the BEC and BCS approaches break down and the description
of the strongly interacting system turns out to be a difficult task, which poses great
challenges for many-body quantum theories.

BEC limit

Two fermionic atoms can be transferred into a bosonic molecule by adiabatically
ramping the magnetic field across the resonance towards repulsive interaction. The
formation of so-called Feshbach molecules was first demonstrated with 4°K atoms [76].
In the case of Li, these diatomic molecules populate the highest vibrational state
with a vibrational quantum number v = 38. Close to the resonance their binding
energy is given by

h2

Bp=——
2mypa2’

(2.11)
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where m,. is the reduced mass of both atoms. The binding of the molecules becomes
deeper when going further away from the resonance towards lower magnetic fields.

There, the scaling of the binding energy with the scattering length is modified since
mCeg
h2
the extension of the scattering length a. With the van der Waals Cg-coefficient
Cs = 1.3340 x 1076 JmS for SLi, the scattering length a has to be modified by
r(3/4)
2v/2I'(5/4)
scattering potential. The binding energy far off from resonance can be calculated by

1/4
the range of the van der Waals interaction, defined by r.g = ( ) / , now reaches

a mean scattering length a = reff to account for the finite extent of the

h2

Fg= ———.
B 2my(a — @)?

(2.12)

The molecules, although their constituents are fermions, are of bosonic nature and
therefore can undergo the phase transition into a molecular Bose-Einstein conden-
sate (BEC) at a critical temperature T. This temperature is independent of the
binding energy, but only determined by the bosonic particle statistics. Since the
Feshbach molecules can be considered as a coherent mixture of an atom pair and
a molecular state, their size is rather large and becomes largest at the resonance.
The intermolecular scattering length was determined to be an,, = 0.6a [87]. Feshbach
molecules are stable as they neither do dissociate by collisions, nor do they relax into
deeply bound molecules. For strong interactions, the critical temperature of the phase
transition to a molecular Bose-Einstein condensate scales with the Fermi energy like
Tc ~ 0.55 Ex /kp, and was observed for the first time in 2003 [50, 51, 52].

BCS limit

On the right hand side of the Feshbach resonance (see Fig. 2.3), weak interactions
can induce a phase transition into a superfluid state of the fermionic system which
corresponds to the famous BCS state, first introduced by Bardeen, Cooper and Schri-
effer to describe superconductivity in metals. In general, the BCS theory describes a
fermionic system with weak attractive interactions, where the mean distance between
interacting particles is much larger than the interparticle spacing. Since the Fermi
sea is unstable against the weakest attractive interactions, the system prefers to form
so-called Cooper pairs with exponentially small binding energy, which effectively de-
creases the total energy. Here, the pairing takes place between two atoms of opposite
momentum and spin at the Fermi surface. It is important to note that the pairing
in the BCS regime is a true many-body effect in contrast to the two-body nature of
the pairing in the BEC regime. This is also reflected in the size of the corresponding
pairs. While the size of Feshbach molecules is small compared to the typical interpar-
ticle spacing, Cooper pairs are spatially overlapped because their size greatly exceeds
the interparticle separation. The Cooper pairing mechanism is related to an energy
gap Agap in the superfluid single-particle excitation spectrum, which is given by

8
Agap = eszFe*”/(Q’“F‘aD . (2.13)
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The Fermi gas exhibits frictionless flow below the critical temperature T of the
superfluid phase transition which is proportional to the gap Agqp. In the regime of
weak interactions kg|a| < 1, it reads

Te = 0.277 Tp e~ ™/ (2Frlal) (2.14)

Above the critical temperature, we find a normal phase that corresponds to a weakly
interacting Fermi liquid with gapless excitations. For realistic values of krl|a|, the
transition temperature quickly becomes very small (see Fig. 2.4), making the obser-
vation of the true BCS state with atomic quantum gases at weak interactions rather
difficult. However, the observation of a vortex lattice in a strongly interacting, ro-
tating Fermi gas provided clear evidence for superfluidity in the crossover regime for
1/kp |a| < —1 [61]. In this regime, the pairing gap has been measured for different
interaction parameters 1/kp a [57, 60].

Unitarity regime

In the vicinity of the resonance for 1/kpla] < 1, the s-wave scattering length a
between two colliding fermions diverges. In this situation, the strongly interacting
Fermi gas is limited by unitarity which means that the Fermi energy Er and 1/kp
remain the only relevant energy and length scales of the system. Under these condi-
tions, an ultracold atomic Fermi gas acquires universal properties which can also be
found in other strongly interacting Fermi gases such as neutron stars or atomic nuclei.
Unitarity implies a simple scaling behavior of physical quantities with respect to the
non-interacting Fermi gas at zero-temperature. For instance, the chemical potential
for a unitarity limited gas is then given by p = (1+ 8)Er, and the mass of the atoms
m can be replaced by the effective mass meg = (1 4+ 8)"'m. In a similar way, the
density profile of a universal Fermi gas is well described by a re-scaled Thomas-Fermi
profile with a size reduced by a factor (1 + 8)1/4. The universal scaling parameter
[ is constantly being refined, both by theoretical calculations based on Monte-Carlo
methods (8 = —0.56(1) and 8 = —0.58(1)) as well as by experimental measurements
on YLi and 4°K. For finite, non-zero temperatures, the Fermi gas in the unitarity
regime obeys universal thermodynamics, which currently is also studied with great
interest in experiments and theory [68, 69, 70, 71]. The nature of the atom pairs in
the unitarity regime neither corresponds to pure Feshbach molecules nor to Cooper
pairing. One may consider them as generalized molecules, stabilized by many-body
effects, or vice versa as generalized Cooper pairs. Their binding energy is of the order
of the Fermi energy, and the size of the constituent fermions is comparable to the
interparticle spacing [60]. This leads to a very exciting aspect of the unitarity regime,
namely the fact that the critical temperature T for superfluidity is very high, of the
order of (0.15 — 0.2)Ep/kp. The ground state at 7' = 0 is a superfluid of pairs, a
so-called resonance superfluid. The zero-temperature ground state stays superfluid
over the entire crossover, from the BEC into the BCS regime. In the normal phase
above the critical temperature, the unitary gas remains strongly interacting. Accord-
ing to conventional BCS theory, pair formation and condensation usually coincide in
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superfluid Fermi systems. However, a very recent experiment [67] could provide evi-
dence for an energy gap in the dispersion relation for a small range above T¢. This
so-called pseudogap implies pairing above the condensation temperature, owing to
persisting pair correlations in the system, which is not present in conventional BCS
superfluids.

In summary, Fig. 2.4 illustrates the phase diagram of an interacting two-component
Fermi gas in the crossover between Bose-Einstein condensation and Bardeen Cooper
Schrieffer superfluidity [88]. Following the previous discussion, the diagram schemat-
ically shows the evolution of the normal and superfluid phase as a function of the
interaction parameter 1/kp a and the relative temperature T/Tp.
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Fig. 2.4: Phase diagram of the BEC to BCS crossover as a function of the in-
teraction parameter (kp a)~' and the relative temperature T'/Tw based on [88].
Below a critical temperature the Fermi system shows superfluid pairing (yel-
low region), which either can be approximated by a BEC of molecules or a
BCS state of Cooper pairs. The critical temperature for the transition into
a superfluid strongly depends on the interaction parameter (kg a)_l for the
BCS regime, whereas in the BEC regime it is mainly dependent on the par-
ticle statistics only. In between, for (kr |a])™' <« 1, the Fermi gas is in the
strongly interacting BEC-BCS crossover regime. The ground state at 7' =0 is
often referred to as resonance superfluid. Right on resonance, the system is in
the unitarity regime. Pairing occurs on the left hand side of the dashed line.
For increasing (kp a)_l, the pair-formation line diverges away from the critical
temperature. At unitarity, a pairing pseudo gap is expected in between both
lines, which implies pairing above the condensation temperature.
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Spin imbalance

The two-dimensional phase diagram in Fig. 2.4 can be extended along a third axis,
which measures the population imbalance of the two components in a spin-mixture
Fermi gas, i.e. the polarization. Exploring imbalance effects of the spin degree of
freedom states another unique property of ultracold Fermi gases, which for example is
nearly impossible in solid state superconductors due to the Meifiner Ochsenfeld effect.
Experiments with spin imbalanced samples of strongly interacting 6Li atoms could
show that superfluidity is quenched at a certain interaction dependent imbalance,
even at zero temperature [63, 66]. This limit is known as the Chandadrasekhar-
Clogston or Pauli paramagnetic limit of superfluidity. Moreover, these experiments
revealed a phase separation between the excess fermions of the majority component
from the superfluid core [63, 64]. Very recently, experimental progress towards a very
exotic polarized superfluid state was achieved in a one dimensional Fermi gas [89].
This so-called FFLO state was proposed by Fulde and Ferrell [90], as well as by
Larkin and Ovchinnikov [91] nearly 40 years ago. There, superfluidity is predicted
to exist under imbalanced spin conditions due to the formation of pairs with finite
net momentum. While in three dimensions the FFLO state is believed to occupy
only a small portion of the phase diagram, FFLO correlations are expected to be
pronounced in one dimension.

2.3 Quantum statistics

When the temperature of an ideal gas at a given density becomes low and the thermal
deBroglie wavelength approaches the interparticle separation, the Boltzmann statis-
tics of classical physics is no longer applicable. At this point, the quantum statistics
of the constituent particles comes into play which accounts for the different occupa-
tion probabilities of quantum states depending on whether the particles are bosons
or fermions. While fermions obey the Fermi-Dirac distribution and the related Pauli
exclusion principle, bosons occupy the quantum states according to the Bose-Einstein
distribution. In the following sections, we discuss in detail how the distinctive par-
ticle statistics of fermions are fundamentally reflected in the noise and correlation
properties of an ideal Fermi gas. In particular, we shed light onto the fluctuations
of the particle density, both in phase space and in real space. The textbook results
of this discussion provide the necessary background to the experiments presented in
chapter 6, reporting on the first real-space visualization of the Pauli exclusion prin-
ciple. For this, it is convenient to recall the quantum statistical description of an
ideal quantum gas, the results of which are essential for the further discussion. This
short review of the grand canonical ensemble follows loosely the standard discussion
as given in a variety of textbooks on statistical mechanics, e.g. [92, 74].

2.3.1 Grand canonical ensemble

The quantum statistics of an ideal quantum gas, i.e. a quantum gas without interac-
tions between the constituents, is most conveniently described in the grand canonical
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ensemble since this is the only ensemble allowing to exactly derive the Fermi-Dirac
and Bose distributions. A Hamiltonian describing a system of N non-interacting par-
ticles confined in some potential V() can be solved in a basis system of N-particle
states |p1,p2,...,pn). BEach of these states consists of products of the correspond-
ing single-particle states |p) with eigen-energy €, that are fully characterized by the
quantum number p:

[P1,p2, ) =R Y (D) Plp1).lpiy) - (2.15)
P

Here, Z P symbolizes a sum over all permutations P of the numbers 1 to N. The
scaling factor N reads \/% for fermions, respectively (N!npllnpg!...)’l/2 for bosons.
The total particle number N results from the sum of the occupation numbers n, of
all single-particle states |p) as N = Zp nyp. The further discussion will be restricted
to fermions only to which this thesis is devoted. The partition function Zg for an
ideal gas in the grand canonical ensemble is given by

Zg = H Zz"ve—ﬁep"p - H (14 ze~Per) (2.16)
P mnp

P

where z and B denote Lagrange multipliers which can be identified as 8 = (kgT) !,
and z to be the fugacity. In analogy to classical statistical mechanics, the grand
canonical potential ® is defined as

i —— log Zg = Z npeiﬁ ZP mplep=i) =_p1! Zlog (1 + zeiﬁep) .
{np} P
(2.17)
From the grand canonical potential the average total number of particles and also
the equation of state can be deduced:

(Ny=N=— (%‘Z)ﬁ =z%logZG =Zn(€p), (2.18)
p

pv
—— =logZg = log (14 ze P¢) . 2.19
T 08 %c g g ( ) (2.19)
P
Here, the occupation number n(ep) is equal to the mean occupation number of state
|p) and corresponds for fermions to the well-known Fermi-Dirac distribution given in

equation (2.1)

1

n(ep) = TiAe i1 (2.20)

Equation (2.18) in combination with the definition (2.20) determines the fugacity z.
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2.4. DENSITY FLUCTUATIONS

For large confining volumes V, i.e. V — oo, the sum over different states Zp
in the above expressions can be replaced by the integral over p, normalized by an
appropriate scaling factor in front of the integral ﬁ f ....dp. Doing so, we again
obtain the equation of state in the grand canonical ensemble

P 4x [T, _Be 1
T B3 | dpp”log(l + ze~7P) = )\73.}05/2('2)7 (2.21)

and the average particle density v = V/N

1 ar [ 2
v Tw ), P

1
; = Afgfsm(z): (2.22)

z—1ePer 41

where A = /27h2/mkgT is the thermal deBroglie wavelength. The last transfor-
mation in each of the equations (2.21) and (2.22) results from the definition of the
generalized Riemann (-function, which hence allows us to rewrite the function f; /o
as series expansion of z:

O NI+l
fzy2(2) = (QTZ . (2.23)
1=1

From the average particle density (N)/V as defined in (2.22), we finally deduce the
average particle number (2.18) as

47V > ze—Pep
N)y= "~ dpp? ———— . 2.24
(N) =3 /0 L (2:24)

2.4 Density fluctuations

Hitherto, the discussion on quantum gases and quantum statistics has been carried
out in the grand canonical ensemble. In general, this ensemble describes a system with
constant chemical potential y, volume V' and temperature T, but accounts for varia-
tions of the internal energy F and the particle number N via an energy and particle
exchange with a surrounding bath. Hence, a finite-size system in thermal equilibrium
with its surrounding shows characteristic fluctuations of the particle number and thus
the density. These density fluctuations are the subject of investigation in the follow-
ing discussion and also in the experimental chapter 6 on the local observation of
antibunching in a trapped Fermi gas [93].

2.4.1 Fluctuations in phase space

Noise in a quantum system, i.e. the specific fluctuations in a physical observable,
is fundamentally governed by quantum statistics and the many-body state of the
underlying particles. In order to understand the specific relationship between the
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2. QUANTUM DEGENERATE FERMI GASES

particle statistics and density fluctuations of the constituent particles in an ideal gas,
we focus on the fluctuations in the occupation numbers of the (quantum) states np
at first, i.e. we study density fluctuations in phase space.

Distinguishable particles

We first consider a Boltzmann gas of distinguishable particles. According to the
formalism of particle statistics discussed in the previous section, the mean occupation
number of a state ¢ with energy €4 is defined as the derivative of the grand canonical
potential & with respect to the energy e,. With the grand canonical potential of the
ideal classical gas,

d=_p1! Z ze—Ber (2.25)
p

we calculate the mean occupation number of a single phase space cell, characterized
by the quantum number q,

0P
(ng) = 5— = ze Pea. (2.26)
Oeq
The second derivative of the grand canonical potential with respect to the energy €4
yields the variance of ng as

9%e

2
Oeg

—3 ((n2) = (ng)?) = —B(Ang)?, (2.27)
and thus the fluctuations of the particle number in state g are given by

(Ang)2 =~ 20 _ ). (229)
Oeq

The notation (-) represents the statistical mean of a quantity which results from a
large number of independent realizations, or, from an experimental point of view,
from repeated measurements. Note that for statistically independent particles with
negligible interactions the variance of particles observed in a single phase space cell
is equal to the number of particles expected on average. This linear relation between
the variance and mean of the particle number is conventionally denoted as classical
shot noise or also Poissonian noise.

Indistinguishable particles

As soon as the thermal deBroglie wavelength approaches the interparticle separation
at sufficiently low temperatures, the particles become indistinguishable and thus sub-
ject to quantum mechanical exchange symmetry. Applying the same derivation for
the mean and variances of the particle numbers onto an ideal Fermi gas, the counting
statistics of fermions (2.20) now has to be accounted for. For a specific phase space
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state labeled by the quantum number g, we obtain the mean number of occupying
particles via

00 inp e 2, eler =
— np

== = (ng), 2.29
aeq i Zp np(Epf,u) < ‘1> ( )
Z{"p} €
and subsequently the variance as
_,0(n 2z le=Bep
(ang)? =~ Al _ = ()~ (ng)?. (230)

Oeq (z—le=Fep 4 1)2

We find that for the ideal Fermi gas the fluctuations of the particle numbers per
phase space cell are reduced below the classical shot noise level. The reduction of
the variance for fermions is a direct consequence of the Pauli exclusion principle,
which inhibits two identical fermionic particles to occupy the same quantum state
and leads to the effect which commonly is denoted as antibunching in literature. In
a certain way, one can think of the Pauli principle as giving rise to an interparticle
"repulsion", which increases the energy cost for large particle fluctuations. At this
point, it is important to note that the sub-Poissonian nature of particle fluctuations
in an ideal Fermi gas is a pure quantum mechanical effect, which has no classical
analogue. In contrast, the equivalent expression of (2.30) for the particle fluctuations
in an ideal Bose gas reads (Ang)? = (ng) + (ng)?. Statistically, bosons are more
likely found to occupy a single phase cell than to be spread over several states and
thus tend to bunch. However, bunching of bosons can be explained within a classical
field description with fluctuating phases, and thus does not require any quantum
mechanical argumentation.

Equations (2.26) to (2.30) predict the results for the mean particle number and its
variance in a probe volume of i3 containing only a single phase space cell. In phase
space, the mean and fluctuations of different cells are statistically independent of
each other. Therefore, the summation over a group of Z neighboring states {ng}
containing all together N = an particles allows us to calculate the mean and
variance in a probe volume larger than the single phase space cell. For the classical
gas, the individual values of the mean and variance merely add up and the total
variance is given by

(AN} gtpzmann = Z - (n) = (N) (2.31)

For the ideal Fermi gas, the particle fluctuations contained in Z phase space cells
follows from (AN)? =3 (n2) — (ng)? = > (ng) — > _(ni)?. Given the case, where
all phase space cells are occupied by same number (ng) on average, the last equation
can be simplified to

(NV)?
z

In a realistic experiment, the number of phase space cells occupied by the probe

(AN i = (N) -

Fermsi (232)
volume, Z = (Axz Ay Az) (Apz Apy Ap;)/h3, might be very large which suppresses
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the N2 term. In order to observe such reduced fluctuations, low temperatures are
essential because this reduces the size of (Aps Apy Ap). In addition, high densities
are also favorable, making the N2 term to enhance itself. Low temperatures and high
densities mean a high occupation of individual phase space cells and thus approaching
quantum degeneracy. Hence, the effect of antibunching only becomes observable
below this fundamental threshold when particles lose their distinctness. In those
regions of the phase space volume with unity occupation , i.e. at zero temperature,
fluctuations in a Fermi gas even vanish completely.

In contrast, bosons show enhanced fluctuations, scaling like (AN)% = (N) +
2
% This relation was already shown by Albert Einstein in 1909, when he first

derived a similar expression for the fluctuation of the energy of black-body radiation
in a given frequency interval. Later, he implicated these findings into the theory of
the ideal quantum gas in 1925.

Experimental background

Since that time, the effects of bunching and antibunching have been demonstrated
experimentally in various systems. The bunching of thermal photons was already
verified in 1956 by R. Hanbury Brown and R.Q. Twiss in a famous experiment, com-
monly named after their last names as Hanbury Brown-Twiss (HBT) experiment [17].
In this experiment, an interferometer was aimed at the star Sirius and the incident
photons were collected on two detectors. Due to bunching, the two intensity distribu-
tions showed a positive correlation. Later, the super-Poissonian statistics of bosons
was also measured in cold atomic system. In 1996, positive density correlations were
found by M. Yasuda and F. Shimizu in the first measurement of the auto-correlation
function of massive particles. This study was performed on an atomic beam of Neon
atoms [94]. More recently, A. Ottl and collaborators in the group of T. Esslinger inves-
tigated the counting statistics of an atom laser beam, formed by continuously output
coupling atoms from a Bose-Einstein condensate. They probed the second order cor-
relation function and found Poissonian statistics for the mono-energetic atom laser
and Bose distributed counting statistics for a pseudo-thermal atomic beam, respec-
tively [18]. Also in 2005, the group of I. Bloch found evidence for positive quantum
noise correlations [19] in an expanding cloud of ultracold 8"Rb atoms emerging from
the Mott insulating phase [95] in an optical lattice. In a similar experiment, the same
group was able to study the effect of antibunching in the anti-correlation revealed
by a fermionic system of ultracold “°K atoms also confined in an optical lattice [20].
Combining both in one experiment, Jeltes et al. drew a comparison of the Hanbury
Brown-Twiss effect [96] for bosons and fermions with metastable Helium (*He and
3He). Moreover, antibunching of fermions also appears in solid state systems and
could be reported for electrons, both for a two-dimensional electron gas in the quan-
tum Hall regime [97] as well as in an interferometric experiment with a mesoscopic
electron beam splitter device [98].
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2.4.2 Fluctuations in real space

All experiments cited in the previous paragraph jointly base on the measurement
of the second order correlation function g(2)(r,r’) in different variations of Han-
bury Brown-Twiss-like experiments. There, the observed effects of bunching and
antibunching occur as a result of the constructive or destructive interference of the
possible propagation paths that two particles can choose to reach the detector. This
interferometric approach intrinsically probes particle correlations in the momentum
space. However, the effects of bunching and antibunching also manifest themselves
in real space, namely in enhanced and suppressed density fluctuations for bosons and
fermions, respectively. We derive this in the following section. Indeed, enhanced
density fluctuations have been observed in a quasi one-dimensional Bose-Einstein
condensate of 3”Rb atoms on an atom chip [26]. Yet, a direct observation of reduced
density fluctuations for fermions in real space has not been reported. The following
sections treat this relation between the particle statistics, i.e. Fermi and Boltzmann
counting statistics, and the density of an ideal gas.

Density fluctuations of an ideal classical gas

The density fluctuations of the ideal classical gas of distinguishable and statistically
independent particles can be readily calculated from its Poissonian statistics. Suppose
we probe a small subvolume V of an ideal classical gas which is in thermal equilibrium
with its surrounding. The probability px to find NV particles in this subvolume V is
given by a binomial distribution

PN = (2:33)

ol ()Y (e

Here, Niot corresponds to the total number of particles in the gas, whereas (N) de-
notes the mean number of particles in the subvolume V. For a large system containing

a large number of particles Niot, the binomial function can be approximated by a
Poissonian distribution

(NN = (V)

~i (2.34)

PN =

For this Poissonian statistics, the variance of the particle number in the observation
volume V' is determined by

o0

(AN)2 = (N?) = (N)2 =3 " N?-py = (N)? = (N). (2.35)
N=0

Dividing the fluctuations of the particle number by the subvolume V yields the density
fluctuations of distinguishable particles in the observation volume V'

(An)QBoltzmann = <TL> (236)
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We note that in analogy to the particle fluctuations in phase space, a Boltzmann gas
also reveals a linear relation between the density fluctuations and the mean density
in real space.

Density fluctuations of an ideal Fermi gas

The mean density (n) of an ideal Fermi gas in a box potential of length L and
volume V = L3 can be directly deduced from the quantity 1/v in equation (2.22)
since 1/v = N/V. Taking the derivative of this equation with respect to the fugacity
z, we obtain the variance of the density, i.e. the density fluctuations:

ar [ 2 ze Pep 1
(n) = w3 dpp m = Ff3/2(z)7 (2.37)
0
and
0 1

(An)%ermi = <n2) - <TL)2 = Z&<n> = §f1/2(z) (238)

_ A [T dpp24zeiﬂe” A [ dpp27(zeiﬁep)2

h3 o ze Pep 1 h3 o (ze=Per 4-1)2

2
ar [ ze~Pep
= - — dpp? | ——— | . 2.
m) - /0 pp <zem+1> (2.39)

The density fluctuations of an ideal Fermi gas comprise two contributions: the first
term which is identical to the mean density, and the second term which strongly de-
pends on the temperature. Referring to equations (2.39) and (2.36), the second term
leads to a deviation from the linear scaling of the classical gas. Thus, the quantum
statistics of fermions leads to reduced density fluctuations in a Fermi gas, which is a
direct manifestation of antibunching in real space. The reduction of density fluctu-
ations is a pure consequence of quantum mechanics without any classical analogue,
and only due to the anti-symmetrization of the wave function for fermions.

Fluctuations at low density and high temperature

This effect is even present - at least formally - in the limit of high temperatures and
low densities, i.e. for z <« 1, when the Fermi gas approaches the classical limit of
a Boltzmann gas. There, all thermodynamic functions reduce to those of a classical
ideal gas plus small corrections caused by the Pauli principle. For small fugacities
z < 1, we use the series expansion (2.23) of the generalized f3,,-function to expand
the density (2.22) as a power law of the fugacity z:

)\3 2

=z

z
o T me T 0(=%). (2.40)
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The density fluctuations result again from (An)%,_ .= = (n?) — (n)? = z%(n) By
solving equation (2.40) to give z as a function of v, the density fluctuations (An)%wmi

can be re-written as a power law of the mean density (n)

3
(Bbeps = () = S5 (02 +0 ((0)?) (241)

For small fugacities, the Fermi gas is in a regime where \3/v < 1, which implies
that the thermal deBroglie wavelength A\ = «/27h2/mkgT is much smaller than the
interparticle separation v1/3. Therefore, the quantum effect of reduced density fluc-
tuations is expected to be negligible. In contrast, quantum effects become noticeable
as soon as the thermal deBroglie reaches the interparticle separation, hence when
approaching quantum degeneracy at low temperatures and high densities. Fig. 2.5
visualizes the appearance of reduced density fluctuations in real space. There, a sam-
ple of a two-dimensional Fermi gas is considered at two different temperatures, but
with equal density in both cases.
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Fig. 2.5: Reduced density fluctuations in real space: Decreasing temperatures
imply an increase of the deBroglie wavelength. For each particle, this length
scale is associated to its uncertainty in position, represented by the cells of
length A in both panels of this figure. The left one shows the spatial distri-
bution of particles in a classical gas. There, the average distance between the
particles, which are randomly distributed, is much larger than A. The orange
box indicates the size of the observation volume. Evaluating the statistics of
particles in different observation volumes, no effect of the fermionic nature of
the particles is apparent since mean and variance are approximately the same.
In contrast, at sufficient low temperatures (right panel), A becomes of the order
of the interparticle separation. Here, the variance of particles numbers over dif-
ferent observation volumes is significantly reduced revealing a direct signature
of antibunching in real space.

2.4.3 Density fluctuations in an ultracold Fermi gas of SLi

So far, we mainly considered the textbook example of an ideal gas in a box potential
of length L and volume V = L3. In this section, we investigate the appearance of
density fluctuations in the real situation of our experiments: a dilute quantum gas of
ultracold 8Li atoms confined in an optical dipole trap. The trapping potential V (r)
is given by the Gaussian intensity profile of the laser beam which creates the trap.
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In this case, the spatial density distribution of the quantum gas is well described by
equation (2.7) in general. For simplicity, the Gaussian potential is approximated by
a harmonic oscillator potential as given in equation (2.3). The only missing quantity
is the chemical potential y, which is an implicit function of the relative temperature
T/Tw. However, for T < Tw, the chemical potential is well approximated by the

2 2
un = (1-5 (1)) (.42

According to this, the spatial density profile can be qualitatively understood in terms

Sommerfeld expansion

of the local density approximation (LDA) which assigns to each point in the cloud a
local chemical potential p(r) defined as

w(r) = po — V(r). (2.43)

Here, po is the chemical potential which corresponds to the Fermi energy Er. In
order to apply the local density approximation to a bulk system of ultracold fermions
in a harmonic trap, the condition of validity requires that the Fermi temperature is
much larger than the harmonic oscillator energies kgTg > hw;. This condition is
reasonably fulfilled for ultracold atoms in optical dipole traps. Hence, the fugacity
z = ePH also becomes a local quantity z(r) = e#(#0=V (")) For a known trapping
potential, the mean density profile is fully characterized, and we can determine the
spatial distribution of the density fluctuations via (2.39)

0 ar [ p 2
kT —(n) = (n) — 7/ d . (2.44)
. 0 A )

8,11, h3 e‘ﬂl‘(’")eﬁp2/2m +1

With the substitution p = p/V2m kT the last equation turns into

ou(r)\ "t an) am [ P ’
w? (%5,°) E‘W_ﬁﬂ/o dp<z—1(r)e’52+1> e

In Fig. 2.6 we show simulated data of the mean density and density fluctuations of a

trapped Fermi gas. The simulation describes an ensemble of 6Li atoms confined in an
anisotropic harmonic oscillator potential with trapping frequencies of wy = wy = 27 x
400 Hz and w, = 27 x25 Hz. We assume a Fermi energy of Er = kg Tp = kg X 500 nK
~ hx10kHz and a temperature of 7" = 100 nK. For these parameters, the local density
approximation is well justified. Fig. 2.6(a) presents the spatial profiles of the mean
density (black solid line) and the corresponding variance (black dashed line) along
the radial axis for y = 0 and z = 0 at a relative temperature of T/T% = 0.2. While
the variance profile is nearly equal to the mean profile at the wings, the variance
shows a strong suppression at the center. Here, we expect the highest occupation of
single quantum states on average, and therefore the effect of the Pauli principle to be
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Fig. 2.6: (a) Simulated profiles of the mean density and density fluctuations
in a trapped ideal Fermi gas. The data show the simulation of an ensemble of
ultracold ®Li atoms at T/Tw = 0.2, trapped in a harmonic oscillator potential
with cylindrical symmetry . The black solid line shows the mean density in
radial direction for y = 0 and z = 0. The corresponding variance is plotted
as dashed black line. (b) Suppression of fluctuations in a Fermi gas a function
of the relative temperature T'/Tr. The ordinate axis is defined by the ratio
between the second term of equation (2.45) and the mean density, both at the
center position of the cloud.

strongly pronounced leading to a clear decrease of fluctuations. The reduction of the
variance is strongly dependent on the temperature and can also be interpreted as a
measure of the local quantum degeneracy. The second term in equation (2.45) reveals
the temperature and space dependent reduction of the fluctuations with respect to
shot noise. In Fig. 2.6(b) we plot the sub-Poissonian suppression of fluctuations
defined by "second term/mean density" as a function of the temperature T at the
center position of the trap. Here, the chemical potential po in the LDA (2.43) has
also to be scaled with the temperature according to the Sommerfeld expansion (2.42).
The lower the relative temperature T'/Tw, the stronger the quantum degeneracy and
the larger the suppression of density fluctuations becomes.

2.5 Fluctuation-dissipation theorem

The temperature dependence of the density fluctuations can be used in the exper-
iment to determine the temperature of the system in absolute units. In general,
thermometry in a Fermi gas is delicate. The standard procedure for the temperature
determination relies on the fitting of a model function to the mean density profile,
either in-situ or after a certain time of flight. However, this has to be taken with cau-
tion since the information about the temperature is contained mainly in the wings
of the distribution, but the profile of a degenerate Fermi gas hardly changes as a
function of the temperature for high degeneracy.
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2.5.1 Fluctuations and susceptibilities

In contrast, fluctuations of the density decrease almost linearly for low tempera-
tures. At this point, equation (2.44) can be interpreted in terms of the fluctuation-
dissipation theorem, which was established by H.B. Callen and T.A. Welton in 1951.
The fluctuation-dissipation theorem (FDT) states a general concept in thermody-
namic and particle statistics, that can be applied to both, classical and quantum
systems. It relates the fluctuations of a given quantity to the product of the tem-
perature and a corresponding susceptibility. In terms of linear response theory, the
theorem defines a general relationship between the response (dissipation) of a system
to an external disturbance on the one hand and the internal fluctuations of the system
in absence of the disturbance on the other hand. Thereby, the fluctuation-dissipation
theorem relies on the assumption that a system in thermodynamic equilibrium re-
sponds to a small applied force in an equivalent way as it responds to spontaneous
fluctuations. These fluctuations are characterized by a specific correlation function
for the relevant physical quantity in thermal equilibrium.

A prominent textbook example of the fluctuation-dissipation theorem is its appli-
cation to the fluctuations of the internal energy U in a canonical ensemble with
constant volume. Here, the FDT relates the fluctuations of the internal energy to
a susceptibility which is identified to be the isochore specific heat Cy = (g#) In
this case, the FDT is specified by kgT Cy = %(AU)Z. In an analogue way, simi-
lar relationships can be deduced for other thermodynamic susceptibilities and their
corresponding fluctuations, two of which are discussed in detail in the further course.

Particle number fluctuations and compressibility

The corresponding susceptibility for fluctuations of the particle number in a grand
canonical ensemble is the isothermal compressibility x7, which is defined by

1 oV vV [ON
wr = (aTD)T L (87) , (2.46)
5 T,V

where an appropriate Maxwell relation has been used for the last transformation [74].

By definition, (%—]:)T v = B(AN)?, and hence the fluctuation dissipation theorem

for fluctuating particle numbers reads

k;BTM = (AN)2. (2.47)
o

Applying the local density approximation, the compressibility also becomes a locally
aN) _ (N (22)”
o or or
A(N)

mine the compressibility o directly from the density profile via the spatial deriva-

tive [27]. In chapter 6, we demonstrate the in-situ measurement of the mean and

defined quantity,

Experimentally, it is possible to deter-

variance of particle numbers in a non-interacting Fermi gas. Referring to equation
(2.47), the ratio of the measured mean and variance density profiles provides a uni-
versal measurement of the temperature, which circumvents the disadvantages of the
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model-dependent fitting procedure, but only relies on the exact knowledge of the
trapping potential to apply the local density approximation. This fluctuation-based
thermometry will also be presented in chapter 6.

So far, the previous discussion of quantum statistics and fluctuations has only been
related to single-component Fermi gases. However, in our experiments we typically
work with an incoherent spin mixture of the two lowest hyperfine sub-states of SLi.
In the absence of interactions between the two spin states, the fluctuation-dissipation
theorem for fluctuations of the particle number applies to each spin component inde-
pendently.

Spin fluctuations and magnetic susceptibility

Including strong interactions, a two-component gas of ultracold atoms offers unique
opportunities for the realization of strongly correlated quantum systems and espe-
cially a wide class of spin Hamiltonians. An important thermodynamic quantity for
the characterization of a two component quantum gas is the magnetic susceptibility
Xmag as it provides clear signatures for the onset of pairing or of magnetic ordering.
In linear response theory, the magnetic susceptibility states a response function of a
system which implicates specific fluctuations in the relative density of the two spin
components (n4 —ny). Both quantities are related by a corresponding fluctuation-
dissipation theorem [16]

kBTX:ag(T) _ (A(NT]; Ni))2 (2.48)

Here, n is the density of the sample and N4 and N are the numbers of fermions in
the two spins states denoted by |1) and || ), respectively. Both add up to the total
atom number N = N3 + N;. Very recently, relation (2.48) has been employed to
determine the magnetic susceptibility from the measured fluctuations in the relative
density of a two-component Fermi gas along the BEC-BCS crossover [99].

2.5.2 Fluctuations and correlations
In the framework of the fluctuation-dissipation theorem, fluctuations are character-

ized by correlations. In that sense, the right hand side of equation (2.39) can be
expressed in terms of the density correlation function (n(r)n(r')) as shown in [100]

Tr ﬁ(r)efﬁ@\z/?mf‘;fuﬁ)

0 ~
(M) = kT2 (r, T, ) = S ———
K Tr e*/B(PZ/Qm‘FV*NN)

:/wwmmwwmwmy (2:49)

According to the standard formalism of quantum mechanics in second quantization,
the density operators n(r) are defined by the field operators ¥(r) and ¥t (r) (see for
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example [29])

Ttr) = Z wi(r)al  and  T(r) = Z Wi (r)a; . (2.50)

The wave functions ¥; are energy eigenfunctions of the particle wave field associated
with the energy level i. The operators a; and EI annihilate or create a particle
in state ¢, and define the particle number operator ﬁi = EIE,L-. For fermions, the
creation and annihilation operators obey the following anti-commutation relations:
{Ej,:l\};} = d;;, and {/zz\;(.,fz\z} = ﬁz\j,fz\k} = 0. Correspondingly, the field operators
@‘L(r) and @(r) create and annihilate a particle at position 7, and they also obey
the anti-commutation relations {@(r),@’f(r’)} = 6(r — ') and {@T(r),ﬁT(r’)} =
{@(7’)7 @(r’)} = 0. The density operator n(r) is defined as n(r) = ot (r)/\I}('r’) We
now show that for a homogeneous system equation (2.49) involves the first and second
order correlation function, which by definition read

gD —r) (@) T(')) and
9P -7 = (W)W ) )T(r)) (2.51)

= (@)U T () T()) - 8(r — ') (T () T())
= (@@E)nE)) = —r)gVE 7). (2.52)

Transforming (2.51) into (2.52), we have used the fermionic anti-commutation relation
of the field operators and the definition of the first order correlation function. For
a homogeneous Fermi gas of single-spin-component, non-interacting particles with
total density n, the correlation functions (1) (r — ') and ¢g(2) (r — ') can be explicitly
calculated (see for example [29]). At T = 0, they are determined by the following
equations

_ 3nsin(kpx) — kpx cos(kpx)

M) (g
g (@) = 3 (pa)? :

(2.53)

g (z) = n? (1 — 5 [sin(kpz) — kpa cos(k:Fx)]2> , (2.54)

9
(kpa)
where z = |r — 7/| and kp = (3-27n)'/3. Fig. 2.7 shows the second order correlation
function g(2) (r—7'), also called pair correlation function, as a function of the particle
separation |r — 7’|, scaled in units of the Fermi wave number kp. Due to the Pauli
principle, even non-interacting fermions of the same spin are correlated. The Pauli
principle causes that two fermions with equal spin must not have the same spatial
wave function, and thus they tend to avoid each other. Therefore, the pair correlation
function drops down from one to zero for particle separations below k;l. Here, the
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Fig. 2.7: Second order correlation function g(z) (r—7") of a homogeneous Fermi
gas.

probability to find two fermions with the same spin is strongly suppressed, for which
reason this region is also denoted as exchange hole.

From equation (2.52), we identify the relationship between the density correlation
function (n(r)n(r’)) and the pair correlation function g(® (r —r'). The density corre-
lations consists of two parts, the pair correlation function plus a "§-peak" which marks
the presence of a particle at zero separation. This means that the region around a
single fermion is depleted for distances smaller than kg ! Ina non-interacting Fermi
gas, it is the Pauli principle which causes the only "interaction" between the particles.
This exchange interaction is only of short range (< k’;l) and therefore, densities at
large separations (> lc};l) are uncorrelated: lim|, _p/|_ 00 mE)nE)) = mr))n(")).
Going back to the starting point of this section, we notice that the difference within
the integral over dr’ 3 in equation (2.49) disappears for large particle separations
|r —7r'| > k;l. In an ideal Fermi gas, only the volume of radius R = k;l thus con-
tains the full information about the density fluctuations at a given position r. Using
equation (2.52), we convert equation (2.49) into

(An)? = / dr'3 [gO (= )5(r — ') + g (r 1) — () (R())]

o~ o~

= () - / dr' 3 [ R - g — )] . (2.55)

The expression in the lower line of equation (2.55) reveals again the suppression of
density fluctuations in an ideal Fermi gas with respect to a classical ideal gas. As
can be shown, at T' = 0 the area of the exchange hole corresponds to the mean
density (n(r)), which implies that (n(r)) is equal to the difference of the areas under
the g(@-function and (n(r))(n(r’)). Hence, fluctuations in an ideal Fermi gas at
zero temperature are totally suppressed and disappear as it is also stated by the left
hand side of the fluctuation-dissipation theorem, which is directly proportional to
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o~

the temperature T'. Qualitatively, the area under the g(®-function and (n(r))(n(r’))
assimilate as the temperature T increases and reaches the Fermi temperature. At
T = Tr, the integral in equation (2.55) vanishes and the density fluctuations reach
the shot noise level.
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3 Experimental setup

This chapter is devoted to the description of the experimental setup used for the
experiments performed in the scope of this thesis. Most of the apparatus has been
designed and built during the first and second year of this PhD project. The design as
well as the assembly of the setup was carried out in close collaboration with my PhD
predecessor Bruno Zimmermann, our project leader Dr. Henning Moritz and my PhD
colleague Jakob Meineke, who joined the group after the first year. Before describing
the different parts of our apparatus in detail, we will first discuss some general design
considerations.

3.1 General design considerations

At the time when our project was launched, the creation of quantum degenerate Fermi
gases with ultracold alkali atoms started to become a widely spread experimental
technique. Only a few years ago, Bose-Einstein condensation of molecules and high
temperature superfluidity in degenerate atomic Fermi gases had been demonstrated
for the first time [50, 51, 52, 61]. Simultaneously, the ability to tune the interatomic
interaction strength via magnetic Feshbach resonances initiated the exploration of
the BEC-BCS crossover and paved the way for studying strongly correlated many-
body systems in a very controlled way. Based on this former experimental progress
in the research field of ultracold fermions, we wanted to reach out for a new level of
control on quantum gases, namely to gain direct local access to these systems on a
microscopic length scale, including optical probing as well as optical manipulation,
both with very high spatial resolution. This approach was very timely as also a few
other groups in the cold atom community were about to implement the ability of
high-resolution imaging into their experiments [4, 5, 6, 7]. Mainly motivated by the
desire for single-site resolution in optical lattice systems, all of these experiments,
however, explore samples of bosonic atoms without exception, and to our knowledge,
there exists no other apparatus addressing fermionic systems with high resolution
yet.

For the technical development, all effort has been aimed at the design of an appara-
tus that combines high-resolution microscopy with well-established technologies for
the preparation of a quantum degenerate Fermi gas. This objective has been ac-
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complished by transferring an ultracold Fermi cloud into an octagonal glass cell with
exceptional optical access. There, the atomic sample is sandwiched between a pair
of identical, high-resolution microscope objectives, the essential tool of our experi-
mental setup. One microscope objective is placed below the glass cell and allows
local imaging of the trapped Fermi gas with a maximum resolution of 660 nm. The
other microscope objective is mounted above the glass cell and represents the main
component of a sophisticated optical setup that enables the generation of arbitrary
optical dipole potentials on the same length scale. In the following paragraphs we
will specify some of the above design considerations more precisely:

Proper isotope The group of alkali-metals in the periodic table of elements offers
only two stable fermionic isotopes which are suitable for our purposes and which had
already been cooled to quantum degeneracy. These are 6Li and 40K, both exhibiting
accessible Feshbach resonances [48, 47, 101, 102]. We chose %Li for several reasons.
First, it has a lower mass and thus favors faster tunneling and transport dynamics.
This is preferable with respect to limited lifetimes of the cold sample and also allows
larger and hence eventually spatially resolvable separations in the projected optical
potential landscape. Second, technical reasons supported our choice as the availabil-
ity of feasible laser sources and the recent progress in the all-optical cooling of SLi.

All optical approach In contrast to bosons, samples of fermionic atoms are by nature
difficult to cool to quantum degeneracy since the Pauli principle suppresses elastic
collisions between identical particles at low temperatures. There are two possibili-
ties to circumvent this constraint. Spin-polarized Fermi gases may become quantum
degenerate by sympathetic cooling in thermal contact to a cold Bose gas [103, 104].
Alternatively, one can prepare the sample in an incoherent superposition of two spin
states, for which standard evaporative cooling is applicable because spin mixtures are
not subject to the Pauli suppression. For the latter method, optical dipole traps are
ideally suited because they intrinsically avoid conflicts which otherwise may occur
by using the alternative of magnetic trapping: First, trapping of different spins is
no issue for optical traps, and second, magnetic Feshbach resonances become easily
applicable. Hence, we decided to follow an all-optical cooling approach which addi-
tionally allows for short experimental duty cycles [50].

Microscope setup In a fermionic system, a fundamental length scale is given by the
Fermi wavelength Ap, which for instance determines the interparticle distance and
the scaling of density-density correlations as we have seen in the previous chapter.
Probing ultracold Fermi gases on this natural length scale is one motivation aspect for
the construction of our new apparatus since by this we expect to gain deeper insight
into the mechanisms governing strongly correlated systems. In ultracold atomic Fermi
gas, Af is typically of the order of one micrometer which sets the upper bound for the
maximum resolution of the microscope system. In addition, the microscopes should
desirably be deployable for at least three different wavelength: resonant light at
671 nm for imaging, red-detuned light at 761 nm to generate attractive optical dipole
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potentials and also blue-detuned light at 532nm for repulsive potentials. Moreover,
the construction of the apparatus, especially the opto-mechanics of the microscope
setups, has to be extremely stable.

The remainder of this chapter is organized in two main parts. The first part, includ-
ing sections 3.2 to 3.6, treats those components of the apparatus and experimental
methods which contribute to the preparation of a quantum degenerate Fermi gas.
This covers the description of the vacuum system, the laser setup, magnetic coils for
the magneto-optical trap and Feshbach fields as well as the discussion of different
imaging techniques. Most of these subjects, in particular the construction of the
apparatus, are presented in great detail in the thesis of my PhD colleague Bruno
Zimmermann [105]. Here, we restrict ourselves to a summary of the most relevant
and important information. In the second part of this chapter, we addresses the
experimental cycle and demonstrate the preparation of a quantum degenerate Fermi
gas and a molecular Bose-Einstein condensate. The high-resolution optical system is
presented in great detail in a separate chapter (see chapter 4). There, particular atten-
tion is paid to the microscope objectives and the performance of our high-resolution
imaging setup. The generation of arbitrarily shaped optical micro-potentials is shown
in chapter 5.

3.2 Overview of the experimental setup

We start the first part of this chapter with a general overview of the experimental
setup, presenting a sketch of the cooling procedure and the vacuum system. Our
experimental apparatus consists of four sections which are depicted in Fig. 3.1: the
oven chamber, the Zeeman slower, the main ultra-high vacuum (UHV) chamber con-
taining a high finesse optical resonator, and the octagonal UHV glass cell laterally
attached to the main vacuum chamber.

3.2.1 Cooling strategy

Fig. 3.1 also illustrates the general cooling procedure of our experimental cycle which
is similar to [50]. The cooling strategy bases on a combined procedure of laser cooling
in a magneto-optical trap and a subsequent two-stage evaporative cooling process in
optical dipole traps: 6Li atoms emanating from an oven are decelerated by a Zeeman
slower and subsequently captured in a magneto-optical trap (MOT) at the center of
the main UHV chamber. In the MOT, we reach the limit of laser cooling given by
the Doppler limit at some hundred micro-kelvins. We then proceed with evaporative
cooling in optical traps. First, the trapped atoms are transferred into a large-volume
standing-wave optical dipole trap realized by the high-finesse optical resonator in-
side the main vacuum chamber. This resonator trap serves as intermediate trapping
potential [106], which maximizes the particle transfer from the MOT into the final
trapping configuration, a tightly focused optical tweezer. After having been evapo-
ratively pre-cooled in the resonator and finally transferred into the optical tweezer,
the trapped cloud is optically moved [107] into an octagonal glass. Here, optical
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Fig. 3.1: Experimental cycle: (a) SLi atoms, emerging from the oven, are
decelerated by a Zeeman slower and captured in a magneto-optical trap. (b)
The trapped atoms are then transferred into a deep, large volume optical dipole
trap that is created using an optical resonator. In the next step, the atoms are
transferred into a tightly focussed optical tweezer. (c) By moving a lens, the
atoms in the optical tweezer are transported into the octagonal glass cell which
offers exceptional optical access. (d) Here, final forced evaporative cooling is
performed leading to the formation of an ultracold fermionic quantum gas.

evaporation is performed by decreasing the power in the optical tweezer, resulting in
the formation of an ultracold Fermi gas.

3.2.2 Vacuum system

Prerequisite for any experiment with ultracold atoms in the nano-kelvin regime is
an ultra-high vacuum (UHV) environment with a background pressure of less than
10~ mbar. Any contact to the *hot’ surrounding or collisions with the residual back-
ground gas reduces the lifetime of the sample and would eventually make reasonable
experimentation impossible. Fig. 3.2 presents an isometric view of our apparatus.
There, the above mentioned segmentation into oven, Zeeman slower, main UHV
chamber and glass cell can be recognized. Vacuum-wise, our machine is separated
into two sections: the main chamber with the glass cell and the vacuum pipe of the
Zeeman slower on the one side, and the oven complex on the other side. At the
oven-sided end of the Zeeman slower, both sections are connected by an all-metal
gate valve (VAT, Mod. 48124, CF16) and a differential pumping stage of 145 mm
length and 3mm diameter. The valve enables a refilling of the oven without break-
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Fig. 3.2: Overview of the experimental apparatus subdivided into four sec-
tions: the oven chamber, the Zeeman slower, the main UHV chamber, and the
octagonal UHV glass cell laterally attached to the main vacuum chamber. A
detailed description of all parts is given in the text.

ing the vacuum in the main chamber. The differential pumping section allows to
maintain ultra-high vacuum conditions (~ 10712 mbar) in the main chamber, while
at the same time the oven is operated at 400°C which limits the vacuum in the oven
complex to 0.5 - 10~1%mbar. In both vacuum sections of our apparatus, ion-getter
pumps sustain the very low UHV background pressure (Gamma Vacuum 20S TiTan
DI, 201/s in the oven chamber; Gamma Vacuum 100L TiTan 30, 1001/s in the main
chamber). In addition, we employ titanium sublimation pumps in each section to
further reduce the background pressure of Ho (Mini ball-point sublimation pump,
VARIAN, Mod. 916-0009 in the main chamber; filament MCD MFG., 3 filaments

in the oven chamber).

Main UHV chamber

The main chamber (MOT chamber) of the apparatus is a self-designed cylindrical
chamber made of electro-polished stainless steel. It offers multiple optical access
through various view ports of different size as illustrated in the Fig. 3.3(b). Cooling
and repumper light for the MOT (see section 3.3.3) enter the chamber through four
CF40 anti-reflection coated (671 nm) view ports along the diagonals of the x — y-
plane. The top and bottom CF200 flanges of the main chamber are specially designed,
featuring a hollow-cylindrical recess for the Feshbach magnetic coils (see section 3.5).
The inner core of the recess holds the view ports for the vertically MOT beams.
Since for these windows anti-reflection (AR) coating was not applicable for technical
reasons, we attached an AR coated substrate on top of each viewport using index
matching oil as adhesive bonding. A CF63 fused-silica viewport along the y-axis
provides the entrance port for the large optical dipole trap used for the transport and
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Fig. 3.3: Overview of the main chamber: (a) Inner and surrounding compo-
nents of the main UHV chamber showing the setup of the optical resonator
trap and solenoids for various magnetic fields used during the experimental
cycle. (b) Main UHV stainless steel chamber housing the magneto-optical trap
and the resonator trap. To the right, the octagonal glass cell is attached via a
CF40 flange.

final evaporative cooling of the atomic sample. In addition, the main chamber exhibits
two pairs of opposing CF16 view ports which are located orthogonal to each other in
a skew plane (see Fig. 3.3(b)). These ports are mainly used for imaging purposes at
the center of the MOT chamber. The technically most challenging component of the
main vacuum chamber is the in-vacuo optical resonator, illustrated in Fig. 3.3(a). It
consists of one flat and one curved high-reflection mirror (radius of curvature: 0.15m)
in hemi-spherical configuration, separated by about 15cm. Both resonator mirrors
are mounted in a corresponding rugged tower-like mechanical support, each of which
is directly attached to the bottom flange of the main chamber. Light for the resonator
trap enters and leaves the chamber vertically through two CF16 view ports in the
bottom of the base flange and gets redirected to the resonator axis by another two
mirrors in the head of the mechanical supports. More details about the resonator are
given in section 3.4.1.

Octagonal glass cell

The UHV-compatible octagonal glass cell is the final science chamber for the micro-
scopic detection and manipulation of ultracold fermions. This custom-made cuvette,
which was manufactured by Hellma® Analytics, is laterally attached to the main
chamber along the y-axis. It is made of single fused-silica plates, thermally contacted
to each other. In order to achieve the best possible optical performance of the mi-
croscope setup, the thickness, especially those of the bottom and top windows, is
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unconditionally regular and lies within the range of 4 £ 0.005 mm. A specimen of
the glass cell material was used for the assembly of the microscope objectives, whose
design is adapted for a
view through the glass
window. All outside
surfaces of the glass
cell are AR coated
for 532nm, 671lnm,
761nm and 1064 nm.
A coating of the in-
ner surfaces is impos-
sible for technical rea-
sons. To avoid prob-
lems caused by reflec-
tions from the inner

surfaces, the octagonal
core is rotated by 3° in
the x/y-plane with re- Fig. 3.4: Photo of the mounted UHV glass cell. The given co-
spect to the z-axis (see ordinate system defines the main axes of the experiment. The
Fig. 3.4). The cylindri- octagonal main body of the glass cuvette is rotated counter-

cal tube of the glass cu- clockwise by 3° with respect to the z-axis.

vette is attached to a

rotatable CF40 flange via a non-magnetic glass-metal transition that allows an ad-
justable mounting of the glass cell to the main chamber. The pumping speed for
the glass cell is about 71/s, mainly limited by the rectangular feed through between
the octagonal core and the glass tube. After evacuating all UHV components, a
comparative test measurement with a Hartmann-Shack sensor could not detect any
disturbing stress or bending effects on the glass plates, which is indispensable for the
quality of the high-resolution optical system.

Oven

At room temperature, lithium exists in the solid phase and only becomes liquid at
temperatures of about 453 K (see appendix B.1). Even at that temperature the vapor
pressure of lithium is still too low to load a magneto-optical trap, which hence can
not be loaded from the background pressure as in the case of rubidium [108]. We
therefore use an oven emitting an atomic beam of 6Li atoms that is subsequently
decelerated by a Zeeman slower and finally captured in the MOT. The oven setup
is depicted in Fig. 3.5 and consists of two components, the actual oven and the
pumping chamber that interconnects the oven and the differential pump section (see
Fig. 3.2). The oven itself is a cylindrical monolithic stainless steel chamber (steel
type 1.4429) with a conical diminution towards the oven nozzle (3mm diameter).
This special design realizes the concept of a reflux oven [109]. Initially filled with
about 4 g of enriched 8Li (purification to 95%, natural abundance of Li: 7.5%) the
cylindrical reservoir is permanently heated to about 400°C, causing an increase of the
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Fig. 3.5: Overview of the oven setup: The oven complex subdivided into two
sections, the heated reservoir containing enriched °Li, and the pumping cham-
ber. Details of the oven are discussed in the text.

lithium vapor pressure to ~ 5-1075 mbar. Both, reservoir and nozzle are heated via a
corresponding copper sleeve, around which a heating wire ( Thermocoaz) is wound. By
tuning the temperature of the reservoir and the nozzle, the flux of atoms emanating
from the oven nozzle can be controlled and matched to the velocity threshold of
the Zeeman slower. The oven nozzle is set to a lower temperature (200°C) with
respect to the reservoir chamber, just above the melting point of lithium. While this
nozzle temperature is still high enough to avoid obstructions of the nozzle by deposits
of condensed lithium, the reduction helps to keep the temperature of the pumping
chamber nearly at room temperature and thus guarantees very good UHV condition.
Notches at both ends of the cone enhance the temperature gradient between the oven
and the pumping chamber. Evaporated atoms which do not pass the oven nozzle
condense in the conical reflux region which is also set to a lower temperature (300°C)
than the reservoir. Eroded capillary races along the cone lead the liquid lithium back
to the reservoir. Furthermore, the inner walls of the reservoir and the entrance of
the cone are faced with a thin mesh that facilitates the reflux and leads to all-around
moistening of the hot reservoir walls for a homogeneous evaporation. Since lithium
and cooper start to form an alloy at about 300°C, we employ nickel gaskets for all
UHV flange connections which may become contaminated with lithium. Along its
path to the differential pumping section, the emanating lithium beam is collimated
by in total three apertures (3 mm diameter). The first one is placed about 4 cm after
the nozzle and casually serves as a protection barrier for superfluous liquid lithium
spilling from the oven nozzle. The other two apertures are attached to the bottom
flange of the pumping chamber. In between them, a mechanical beam block can be
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inserted to stop the atomic beam. This block is held at the vacuum-sided end of
a mechanical vacuum feed through, which is externally operated by a servo motor.
Experimentally, a continuous atom beam does not disturb the performance of the
MOT or the operation of the resonator, and therefore we only block the beam when
the experiment is set on hold. The atomic beam can be adjusted in position and
angle. For this, the entire oven complex is mounted on an movable breadboard. A
short vacuum below between the oven complex and the Zeeman slower pipe provides
the necessary flexibility of the vacuum system for the adjustment. The oven reservoir
is not only evacuated via the nozzle aperture, but also through an additional CF16
tube connection between the oven and the pumping chamber, which increases the
pumping of Ha. More technical details of the oven design can be found in [105].

3.3 Laser cooling

The mechanism of laser cooling relies on the action of dissipative light forces caused
by resonant light scattering [108, 110]. Atoms propagating in opposite direction to
a red-detuned laser beam resonantly scatter photons at a certain velocity due to
the Doppler effect. During the stimulated absorption, the photon momentum of hk
is transferred onto the atom along the direction of the photon wave vector k. In
contrast, the spontaneous re-emission of the photons occurs randomly distributed in
all directions, and therefore the average momentum transfer caused by spontaneous
emission is zero. This results in a net momentum transfer in the direction of the laser
beam and thus to a deceleration of the atoms. This effect is exploited in the Zeeman
slower for decelerating the atomic beam emanating from the oven nozzle, and in the
magneto-optical trap for final trapping and further cooling of the decelerated atoms.

Before describing the implementation of laser cooling in our setup, we will first present
the laser system that provides the near resonant light at 671 nm for the Zeeman slower
and the MOT.

3.3.1 Laser system

The laser system, a schematic of which can be found in [105], is set up on a separate
optical table (laser table) in the laboratory. Single-mode polarization maintaining
fibers are used to transfer the light to the experimental apparatus set up on a second
optical table (experiment table). For all applications, i.e. laser cooling and imag-
ing, the linewidth of the lasers has to be significantly smaller than the linewidth of
the respective atomic transitions. In appendix B.2, we have attached the atomic
level structure of 6Li, highlighting all relevant transitions involved in the experiment.
Without exception, only transitions along the D2-line of SLi are driven, which has a
natural linewidth of about I' = 6 MHz (see appendix B.1). In atomic physics, grating
stabilized diode lasers have proven to be an excellent laser light source in order to
manipulate the internal and external degrees of freedom of atoms. They offer a suf-
ficiently small linewidth of the order of one MHz, while in addition their wavelength
can be tuned with the external cavity by up to some GHz [111]. Their output power
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varies between 15 mW and 25 mW, depending on the wavelength and the specific laser
diode type.

Reference laser For our experiments, we employ such a diode laser as reference
for all other near-resonant light sources. Using Doppler-free frequency modulation
spectroscopy [112], its absolute frequency is stabilized to the crossover feature of the
F = 3/2 transition along the D2-line at 670.977 nm (see appendix B.2). The spec-
troscopy is carried out with a custom-made vapor cell consisting of an evacuated
vacuum tube with CF16 view ports at both ends. Like the oven chamber, it is filled
with purified °Li and heated to about 400°C, thus producing a sufficiently high va-
por pressure for the spectroscopy. The design and installation of our vapor cell is
extensively described in the Diploma thesis of Ch. Zipkes [113].

Zeeman slower light The cooling light for the Zeeman slower is generated with a
tapered amplifier (TA), based on a home-made design. The special geometric design
of the semiconductor chip imparts a broad gain profile extending more than +5nm
around the center wavelength. TAs inherit the single frequency mode characteristic
from the seeding laser. Here, we use about 10 mW light power of the reference laser
for the seeding. Hence, the Zeeman slower light is also resonant to the crossover of
the F' = 3/2 transition, which corresponds to a detuning of 114 MHz to the red for
the cooling transition (see appendix B.2). In total, the Zeeman slower TA achieves
an output power of 500 mW, about 200 mW of which are directly transferred to the
experiment table through an optical fiber.

MOT light Light for the MOT is supplied by a commercial tapered amplifier sys-
tem (TOPTICA, TA 100), which provides an output power of about 500 mW. The
internal master laser is stabilized to the reference laser using a standard offset lock-
ing technique [114]. The MOT requires a cycling transition for repeated absorbtion
and spontaneous re-emission, which for alkali atoms implies a cooling and repumper
process (see section 3.3.3). Hence, the MOT light is split into two parts after the
TA, one for the cooling, the other for the repumper transition. The respective fre-
quency shifts of +114 MHz, and also the intensity for both transitions, are adjusted
by individual acousto-optical modulators (AOM) in each optical path. Coupled into
different fibers, the two beams are separately sent to the experiment table, where
they are overlapped on polarizing beam splitter cubes (PBS) and finally redivided in
three different paths for the three orthogonal principal axes of the MOT.

Imaging light One additional home-made diode laser provides the resonant laser light
for imaging. It is also offset-locked with respect to the reference laser. This specific
offset lock enables us to tune the frequency over a wide range (~ 1 GHz) which is
necessary for resonant imaging at different magnetic fields (see appendix B.3). The
output line of the imaging laser is split in two independent pairs of optical paths, each
pair having the same frequency. One pair travels through a single-path AOM setup
shifting the frequency by +80 MHz, while the other pair passes through a double-path
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AOM setup giving rise to an additional frequency shift of +80 MHz, hence +160 MHz
in total. The two imaging AOMs allow a fast switching of the imaging light. Overall,
four transfer fibers allocate the imaging light at any place on the optical table.

3.3.2 Zeeman slower

Due to the oven temperature of 400°C, lithium atoms leave the oven nozzle with a
thermal mean velocity of more than 1000 m/s towards the main chamber. However,
the MOT can only capture atoms with a maximum velocity of 60 m/s. In our exper-
iment, the required deceleration of the atomic beam is accomplished by a Zeeman
slower [110] as depicted in Fig. 3.6. Light from the Zeeman slower TA enters the
apparatus through a sapphire viewport at the left hand side of Fig. 3.2 and travels
counter-propagating to the atomic beam towards the oven nozzle. The resulting net
force from the resonant photon absorption and re-emission effectively decelerates the
atoms. Due to the Doppler effect, the slowing atoms would rapidly tune themselves
out of resonance with the cooling light halting the deceleration process. Overcom-
ing this problem, a Zeeman slower exploits the Zeeman effect to compensate for the
Doppler shift: a spatially varying magnetic field shifts the transition frequency of the
cooling cycle in such a way that the atomic beam is kept in resonance on its journey
towards the MOT. For this, the spatial profile of the magnetic field B(z) has to fulfill
the following condition [108]

AmpugB(z) 27
———— = 7 [v(&) — Vend] - (3.1)

h AL
Here, Am denotes the difference in the magnetic moment between the ground and
excited state of the cooling transition, ug is Bohr magneton, Ap, is the resonant laser
wavelength at zero magnetic field, and venq and v(z) correspond to the final velocity

water cooling tube magnetic field coil gate valve

vacuum tube differential pumping tube milled water channel

Fig. 3.6: Cut through the Zeeman slower. The decreasing field design allows
to slow down the atomic beam from an initial velocity of about 1000m/s at
the oven nozzle to about 60 m/s at the MOT position. In total, the cone of the
coil has a maximum length of 571 mm and a maximum radius of 55 mm.
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at the MOT position and the velocity profile, respectively.

For our experiment, we built and use a Zeeman slower in decreasing field configura-
tion, i.e. the magnetic field along the beam axis monotonously decreases towards the
MOT. For the exact calculation of the required field profile, the magnetic quadrupole
field of the MOT coils has also been considered ensuring that the atomic beam is
also decelerated efficiently at the very end. A sketch of our Zeeman slower is given
in Fig. 3.6. In order to avoid acoustic transmission of mechanical vibrations onto the
vacuum system, the wires of the Zeeman slower coil are not directly wound around
the drift tube between oven and main chamber, but around a separate spool carrier.
This carrier is a double-walled copper tube, which also provides a sufficient water
cooling of the Zeeman slower realized by a sophisticated water channel between the
outer and inner tube [105]. The Zeeman coil itself consists of 17 double layers and one
final single layer of high temperature doubly enameled copper wire (1 x 3 mm2). The
glueless winding was done with the help of the company Bruker. The different layers
are paired, whereas each double layer starts at a different point such that the step
like layer configuration adapts to the required, square root like magnetic field profile
of equation (3.1). Each double layer is conductively connected to a plug board, where
the various pairs are connected in series. This special wiring configuration enables to
overleap an eventually broken double layer in the series connection.

Applying a current of 8 A at 50V, the on-axis magnetic field reaches a maximum of
929 G at the oven side. This value sets the maximum initial beam velocity to 910 m/s,
above which atoms cannot be decelerated anymore. The profile of the decelerating
laser beam is matched to the divergent profile of the atomic beam by means of
telescope optics. With an entrance Gaussian waist (1/e2-radius) of 10 mm at the
sapphire viewport, the Zeeman slower beam is focussed down to about 3mm at the
position of the differential pumping tube. Typically, we apply 30 mW light power,
which corresponds to more than half of the saturation intensity at any position along
the atomic beam. Experimentally, it turned out that the Zeeman slower even works
without any repumping light [115], for which reason we only drive the transition
(2281)2,mj = 1/2) — (22P3/5,m; = 3/2) with circularly polarized light (see
appendix B.2). Considering all above settings, about 17% of the atoms emanating
from the oven nozzle are decelerated, thereby yielding an estimated flux of about
10° atoms/s.

3.3.3 Magneto-optical trap

The Zeeman-slowed atoms are finally captured and further cooled in the magneto-
optical trap, right at the center of the main chamber. Here, three orthogonal pairs
of counterpropagating, red-detuned laser beams intersect at the center of a magnetic
quadrupole field as illustrated in Fig. 3.7(a). The red-detuned laser beams alone
form a so-called optical molasses [108], whose velocity dependent forces slow down
the atomic motion and thus lead to a compression in momentum space due to laser
cooling. In addition, the inhomogeneous quadrupole field causes a spatially dependent
Zeeman shift of the cooling transition and thus a spatially varying detuning. If the
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co- and counter-propagating laser beams show opposite circular polarizations, the
combination of both gives rise to spatially varying dissipative and confining forces.
Laser cooling in a magneto-optical trap, especially in the case of ®Li, owing to its
hyperfine splitting in the excited state (see appendix B.2), is fundamentally limited
to the so-called Doppler temperature [116], which is given by the stochastic nature of
the absorption and emission process. For 6Li, the Doppler temperature amounts to
140 pK. For further information about the theory of magneto-topical traps, we refer
to [108, 110, 117].

() (b)

Fig. 3.7: (a) Schematic of the magneto-optical trap: The combination of a
magnetic quadrupole field and six counterpropagating laser beams leads to
the trapping and cooling of neutral atoms in the center of the quadrupole
field. (b) Photo of fluorescing ®Li atoms captured in the MOT of the presented
apparatus. The shown atomic cloud contains about 10° atoms at a temperature
of some hundred microkelvins.

The pair of magnetic coils, that is used to generate the magnetic quadrupole field
in our experiment, is illustrated in Fig. 3.3(a). Its design was chosen such that the
magnetic field of the MOT is smoothly matched to the magnetic field of the Zeeman
slower, thereby optimizing the loading efficiency of the MOT. A single coil consists
of two sub-coils in series, each of them built up of 45 windings of high-temperature,
doubly enameled copper wire (1 x 5mm2). The wire is wound on a double-walled
aluminum carrier which supports an internal water channel for sufficient cooling of
the coils. We operate the MOT coil pair in anti-Helmholtz configuration, giving rise
to the required magnetic quadrupole field. Applying a current of 30 A, we achieve a
magnetic field gradient of 6.75 G/cm along the z- and y-axis, and -13.5 G/cm along
the z-axis respectively.

For the laser cooling, we use the transition from the F' = 3/2 manifold of the 2 251/2
ground state to the 2 2P3/2 excited state . However, this is not a closed transition as
excited atoms can also decay to the F' = 1/2 manifold of the ground state. Therefore,
we also apply repumper light along all MOT axes which drives the (2251/2,F =
1/2) — (22P3/2) transition. For loading the MOT, both repumper and cooling
light are detuned by 39 MHz to the red, which corresponds to —6.5I". In contrast
to 8"Rb, samples of 6Li atoms trapped in MOT are rather dilute. This allows us to
operate the MOT in retro-reflected configuration, i.e. only three laser beams have
to be employed, each along one of the orthogonal principal axis of the MOT. After
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once having passed the MOT, each beam is retro-reflected by a mirror with a A\/4
retardation plate in front, which generates the corresponding counter-propagating
beam with the appropriate polarization. In order to maximize the trapping volume
of the MOT, we use the full aperture of the CF40 viewports for transmitting the cooler
and repumper light through the MOT. At this size, we drive both transitions at about
saturation intensity. Fig. 3.7(b) shows a photo of a Li atomic cloud captured in the
MOT. The lifetime of the atoms in the MOT is of the order of 20 minutes, indicating
a very low background pressure.

3.4 All-optical evaporative cooling

The temperature (140 £K) and phase space density (10~%) achievable in a magneto-
optical trap do by far not meet the conditions of quantum degeneracy. We overcome
this by evaporative cooling in the conservative potential of an optical dipole trap,
which is realized by a focused, off-resonant laser beam. For the evaporative cooling
process, the depth of the dipole trap is slowly reduced by lowering the laser power
in the trapping beam. As a result, the most energetic particles of the sample are
allowed to escape from the trap causing a truncation of the high-temperature tail of
the Boltzmann-distribution. If the lowering of the trap depth is sufficiently slow for
re-thermalization to occur, interparticle collisions continuously restore the Boltzmann
distribution, yet at a lower average temperature, which implies an effective cooling of
the gas accompanied by a noticeable particle loss. The speed with which the potential
depth can be reduced and hence the cooling can be driven depends on the collision
rate of the atoms. Experimentally, we control this parameter by means of a Feshbach
resonance as discussed in chapter 2.2.

Optical dipole force

The capability of trapping neutral particles in a spatially inhomogeneous light field
of frequency w, which is detuned by A = w — wp from an atomic transition with
frequency wp, owes to the conservative interaction between off-resonant light and
matter. This process can be understood in a semi-classical picture: the electric field
of the light induces an electric dipole moment d in the atom that is proportional to
the electric field strength d = a E, where « is the complex polarizability of the atom.
Averaged over time, the induced dipole moment, in turn, experiences a potential U
in the electric field due to the dispersive real part of «,

1
2epc

Udip:—%<d-E):—%<aE2) =— Re(a) I, (3.2)
where I is the intensity distribution of the light. The sign of the polarizability depends
on the detuning of the trapping beam from the atomic resonance. For red detuning,
a is positive and the atoms are attracted towards regions of high intensity. Even
though the trapping light is far detuned from any atomic transition, there also exists
a non-vanishing probability for the atom to absorb and re-emit a photon out of the
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light field. This spontaneous scattering rate is related to the absorptive imaginary
part of the polarizability by

1

—(d-B) =

Caip = — m(a) I, (3.3)

hegc

For a moderate detuning, one can derive an analytic expressions for the trapping
potential and the scattering rate of photons [31]:

3mc? r r
Uai s Yy = 5 3 1 s Yy 3.4
dip (T, Y, 2) 23 (wo_w+w0+w> (z,¥,2) (3.4)
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As the dipole potential scales like Uqip, ~ I/A, whereas the scattering rate scales
like Tqjp ~ I/AZ2, it is most preferable for a given dipole potential depth to work
with larger detunings and higher intensities in order to avoid unwanted spontaneous
scattering events. From this derivation it can be also seen that optical dipole traps
offer the advantage to confine any ensemble of neutral atoms without restrictions to
the internal magnetic state, which casually enables the untroubled employment of
magnetic Feshbach resonances.

In our experiment, we use a combination of two different dipole traps operated with
far off-resonant light (1064 nm) to finally reach quantum degeneracy in the trapped
Fermi gas. The first trap is a standing-wave dipole trap, realized by the in-vacuo
optical resonator in the main UHV chamber. This trap provides a deep, large-volume
trapping potential allowing to transfer a large number of atoms from the MOT into
the second optical dipole trap, a tightly focussed optical tweezer. After having been
transferred, the trapped sample is subsequently transported into the glass cell by
moving a lens in the optical path of the tweezer. Besides the ability for the optical
transport, the tweezer offers the advantage that its power can be precisely controlled
over 4 orders of magnitudes. This eventually allows us to efficiently cool the trapped
particles down to some tens of nanokelvins.

3.4.1 Resonator trap

In principle, particles could be directly transferred from the MOT into a running wave
dipole trap (optical tweezer) as realized in other experiments [49, 118]. Following
this approach, an efficient transfer requires very high optical powers for the dipole
trap, amounting to at least some tens of Watts employing e.g. a commonly used
Nd:YAG laser at 1064nm. Apart from laser safety reasons, these high powers are
accompanied by further issues, such as thermal lensing when light of high intensity
passes for example through a vacuum viewport. We therefore decided to use an
optical resonator as intermediate trapping potential that supports a convenient atom
transfer from the MOT into the final trapping configuration, the above mentioned
running wave dipole trap. On the one hand, the resonant enhancement of light power
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eases to attain potential depths which exceed the mean kinetic energy of particles
trapped in the MOT. Thus, only moderate input powers (fairly below 5 W) have to be
applied. On the other hand, the geometry of the resonator mode can additionally be
chosen in such a way that it provides a good spatial overlap with the confining volume
of the MOT. Although the resonator will be operated with low injection powers, the
enhanced light field in between the two mirrors nevertheless has to exceed some
hundred Watts, providing a trapping potential which at least surpasses the Doppler
temperature of 140 uK. This almost presupposes to place the resonator into the
vacuum chamber in order to avoid serious damages of the mirror surfaces caused by
high light intensities, and also to minimize loss processes which otherwise would occur
when the resonator mode had to pass through the vacuum viewports (about 2% per
round trip).

Geometry

As briefly mentioned in section 3.2.2, we use a linear resonator in hemi-spherical con-
figuration. It consists of one planar mirror M; and one curved mirror My with radii
of curvature R1 = oo and Ry = 150 mm, respectively. The mirrors are placed sym-
metrically around the MOT position at the center of the main chamber as illustrated
in Fig. 3.8. The resonator axis is horizontally oriented in the z/y-plane on a level with
the MOT, and turned by 72° with respect to the Zeeman slower axis. The planar
mirror is located in the oven-sided half of the MOT chamber close to the CF60 view-
port, whereas the curved mirror is placed in the opposite half close to the glass cell
(see Fig. 3.1). The mechanical setup of the mirror mountings will be discussed sep-
arately later on. We operate the resonator slightly below the stabilization limit, i.e.
the resonator length L has been chosen to be only marginally smaller than the radius

mirror planar mirror M1 curved mirror M2 mirror

CF16 viewp'ort mirror support  base flange CF16 viewport

Fig. 3.8: Cut through the optical resonator which is operated inside the main
UHV vacuum chamber. The two massive mechanical supports holding the
resonator mirrors are rigidly mounted onto the CF200 base flange of the main
UHV chamber, ensuring a high passive stability of the resonator mode.
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of curvature Rp. The injected light field and the resonator have been aligned with
respect to each other in such a way that only the lowest transversal mode TEMjgq is
excited. Here, the choice of the resonator length L allows us to adjust the waist of the
resonator mode w(y,) along the resonator axis y, [119]. The actual resonator length
has been determined in a separate measurement of the frequency separation between
different transversal and axial modes [105], yielding L = 14.975 cm. Correspondingly,
the resonator has a free spectral range of FSR = 57 ~ 1GHz, which is equal to
the inverse of the round trip time of a single photon. Light is coupled into the res-
onator through the planar mirror, where the resonator mode has the smallest waist.
There, the waist of the injection beam has been estimated to be wo = (45 + 5 pm),
resulting in a waist of the resonator mode at the MOT position y, ~ L/2 of about
wr, 72 ~ 550 pm.

Power enhancement - mode and impedance matching

Light injected to the resonator travels back and forth between the two high-reflection
mirrors, in this way building up a standing-wave light pattern whose intensity strongly
depends on the number of round trips per photon, and thus on the quality of the
mirrors. In general, the power enhancement S of a resonator is fully characterized
by the reflectivity (r1,72) and transmission (¢1,¢2) of both mirrors, as well as the
amplitude losses [ of the resonator:

ti1to
S=——-——. 3.6
(1 —T’1T2l)2 ( )

In order to maximize the potential depths of the resonator trap, we matched the
mode of the injected laser beam to the mode of the resonator by an accurate choice
and alignment of the optical components in front (telescope optics). In addition, we
demanded for specific reflectivities of both mirrors such that the injected power ap-
proximately compensates the losses process of the resonator owing to absorption and
scattering losses of the mirrors. Both mirrors were manufactured and characterized
by ATFilms, exhibiting a reflectivity of 99.98 +0.005% and a transmission of 0.015%.
The loss process and hence the quality of the resonator is commonly reflected in its
finesse F'. This quantity is directly proportional to the number of round trips a pho-
ton can carry out on average before the energy inside the resonator drops by a factor
of 1/e. We determined the finesse F' of our resonator by measuring the so-called
cavity-ring-down time, after the injection power has been suddenly switched off. The
measurement yields F' = 10200 and allows us to estimate the resonator losses via
F = (my/r1iral)/(1 — riral). Inserting all parameters into equation (3.6), our res-
onator provides a power enhancement of S = 1580. To feed the resonator trap, we
use an ultra-stable, diode-pumped Nd:YAG laser (InnoLight, Mephisto 2000) with
a nominal output power of 2W at 1064 nm, about 600 mW of which are typically in-
jected into the resonator. Hence, the power of the standing-wave light field building
up between the two resonator mirrors can easily exceed 1 kW, again emphasizing the
need to set up the resonator inside the main UHV chamber.
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Trapping potential

Using equation (3.8), we can calculate the depth of the resonator trap for 5Li atoms
that are confined in the standing light field right in between both mirrors at the
position of the MOT:

Uresonator ~ kB - (800 MK/W) -P. (37)

Here, P denotes the injected power of the trapping light. Typically, we work with an
initial trapping depth of kg - 500 uK when transferring the atoms from the MOT into
the resonator. As a result, the trapped atoms spread out over approximately 6000
individual potential wells of the standing wave.

Mechanical setup

Placing a high-finesse optical resonator operated close to the stability limit into an
UHV vacuum setup is a rather challenging task as a re-alignment of the resonator
mode is of course impossible after having closed the vacuum chamber. Moreover,
the alignment necessarily has to survive a backing out of the whole setup up to
180 °C. These conditions already make high demands on the opto-mechanics of the
resonator and the mirrors themselves. On the one side, the mounting should enable
a convenient and tunable alignment of the mirror geometry, while on the other side
it has to guarantee a long-term passive stability allowing an untroubled operation in
close vicinity to strong magnetic fields under UHV.

spring for planar MACOR steel micrometer curved
mirror mirror My tube piezo tube capsule  gerew mirror M, clamp

Fig. 3.9: Cut through the mirror mounts of the resonator setup revealing
details of the opto-mechanics used to align and stabilize the resonator mode.
(a) shows the piezo-driven holder of the planar resonator mirror enabling a fine
adjustment of the axial resonator length. (b) illustrates the kinematic mount
of the curved resonator mirror allowing a tilting along two perpendicular axes.

In our apparatus, each of the two resonator mirrors is mounted in a separate collar-
like mechanical support made of stainless steel, both of which are shown in Fig. 3.8.
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The UHV-compatible, massive construction is directly attached to the CF200 bot-
tom flange of the main chamber. The latter features two vertical CF16 viewports for
each mirror mount, through which the resonator light is coupled in and out. Trapping
light, vertically injected into the support of the planar mirror, is transmitted upwards
through a light channel in the interior of the collar, horizontally reflected by a rigidly
mounted 45° mirror (CVI Melles Griot, 1/2 inch, HR 1064 nm), and finally coupled
into the resonator through M. At the opposite end of the resonator, the trapping
light is coupled out through the curved mirror Ms and leaves the vacuum chamber in
the same manner, but reversed order. The actual mirror holders enabling the align-
ment of the resonator mode are housed in the top of each resonator collar. Details are
presented in Fig. 3.9(a)-(b). The planar mirror (diameter 7.75 mm, thickness 4 mm)
is embedded in a sophisticated capsule-like holder that allows both, a coarse and fine
adjustment of the resonator length L. For the coarse adjustment, the whole capsule is
axially guided by a cylindrical feedthrough in the main collar and can be moved back
and forth by turning three spring loaded screws (M2.5) with corresponding threads in
the collar corpus. The fine adjustment is accomplished by a hollow piezo-cylinder that
presses the planar mirror against a spring-loaded counter bearing inside the stainless
steel capsule. To improve the slippage of the piezo and the mirror, both are inserted
in a ceramic tube made of MACOR (see Fig. 3.9(a)). The curved mirror (diameter
10 mm, thickness 4 mm) is mounted in a two-component kinematic mirror holder. Its
tiltable back plate contains the mirror itself, while the rigid front plate is directly
attached to a protruded pedestal of the main support as illustrated in Fig. 3.9(b).
The mirror is fixed by a flat steel ring that helps to distribute the clamping forces
uniformly on the mirror surface, thus minimizing unwanted birefringent side effects.
Two spring-loaded micrometer screws (lockable) between front and rear plate enable
an adjustable tilt of the curved mirror along two perpendicular axes.

Locking technique

Trapping light only enters the resonator if the resonator length L is an integer mul-
tiple of the light wavelength A, i.e. 2L = nA with n € N. This resonance condition
has to be necessarily fulfilled within the spectral linewidth of the excited resonator
mode Avres, which is solely determined by the finesse F' and the free spectral range
FSR of the resonator through Avyes = FSR/F. For our resonator, the linewidth of
the TEMgp amounts to 98 kHz, corresponding to a change in the resonator length of
5.3-10~ ' m. However, the resonator length as well as the frequency of the injection
light are intrinsically affected by short and long term drifts, which have to be com-
pensated for by stabilizing at least either of them. In our experiment, we stabilize the
frequency of the injection laser via a Pound-Drever-Hall lock [120, 121]. This tech-
nique employs a phase-modulation of the injection light and uses the fact that light
reflected from the in-coupling mirror M; acquires a phase shift with respect to the
transmitted light. We accomplish the the phase-modulation of the carrier frequency
Vmod Via an electro-optical modulator (EOM), generating side bands at vp, £ vmeq
with a modulation frequency of vy,,q = 228 MHz. Experimentally, the beat signal
occurring between the sidebands and the carrier frequency of the reflected beam is
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detected on a photodiode (PD) and demodulated by frequency-mixing with a local
oscillator of the same frequency. Close to resonance, the resulting signal is propor-
tional to the phase shift, which we subsequently convert into an appropriate error
signal dverror by means of electronics. This error signal, is fed back to a custom-made
PID (Proportional-Integral-Derivative) device, whose output control signal veontrol
is sent to two regulation devices in order to stabilize the injection light onto the res-
onator mode. On the one hand, the control signal is sent to a piezo-electric device in
the Nd:YAG laser allowing to adjust the laser frequency with a regulation bandwidth
of 100 kHz. However, a voltage divider in the feedback line for the piezo reduces the
bandwidth to 300 Hz. On the other hand, the integrated part of the PID loop is
used to regulate long-term drifts of the laser frequency via the temperature feedback
of the Nd:YAG crystal. In order to correct for deviations on a fast time scale, we
directly apply the error signal from the demodulation onto an acousto-optical modu-
lator (AOM) in the optical path of the injection light. Without significantly changing
the coupling efficiency to the resonator due to the slightly varying deflection angle of
the injection beam, the AOM loop allows for a regulation bandwidth up to 200 kHz.
An overview of the locking scheme and also the below described intensity stabilization
is given in Fig. 3.10.

Intensity stabilization

Experimentally, the intensity of the resonator has to be precisely controllable for two
reasons. First, the number of atoms transferred from the MOT into the resonator

V = Vi+Vaom PDH error signal
Vi+Vaom+/-Veom
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Fig. 3.10: Schematic of the Pound-Drever-Hall locking scheme used to stabilize
the trapping light onto the in-vacuo resonator. Part of this setup also illustrates
the PID control loop for the intensity stabilization of the resonator trap.
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strongly depends on the stability of the initial trap depth during the transfer. And
second, the trapped sample is evaporatively pre-cooled in the standing wave potential
since a reduced temperature enhances the efficiency of the final transfer into the
running wave dipole trap. For the cooling process, we lower the optical power inside
the resonator down to 20% of its initial trap depth following a slow exponential ramp.
In order to stabilize the intensity during the ramp, we measure the trapping power by
monitoring the resonator transmission on a photodiode (PD). This signal is fed into
a servo loop (PID controller) that regulates the light intensity using an AOM in the
optical path of the injection light. When the intensity in the resonator trap is reduced
for evaporation, the error signal in the closed loop feedback system is correspondingly
reduced, and the lock becomes less stable. To solve this problem, we electronically
normalize the error signal by the set value of the feedback loop through a variable
gain amplification (see VGA in Fig. 3.10), making the error signal independent of the
actual trap power.

3.4.2 Running wave dipole trap

For the final evaporative cooling below quantum degeneracy, the trapped sample is
transferred from the resonator trap into a running wave dipole trap that is readily
provided by a focused, red-detuned laser beam at 1064nm. On the one hand, this
Far Off-Resonance Trap (FORT) allows an effective and more convenient evaporative
cooling than the resonator trap because its intensity can be reliably regulated to very
low values during the final stage of the evaporation ramp. On the other hand, the
running wave trap offers a simple and technically practicable possibility to transport
the trapped sample to a location with enhanced optical access, the octagonal glass
cell in our setup.

Trap setup

As light source for the FORT, we use a fiber amplifier stage (NUFERN, SFA-PM1064-
10W-0) emitting light of 10 W at a wavelength of A = 1064 nm. This fiber amplifier
stage needs to be seeded by about 100 mW light power at the same wavelength, for
which we sideline a small portion of the Nd:YAG light used to run the resonator.
To do forced evaporative cooling, the power of the trapping light has to be reduced
tremendously, which we accomplish by an AOM. After passing through the latter,
the output beam of the fiber laser is sent through a single mode optical fiber for
transversal mode cleaning. In addition, the cleaning fiber enables an easy replacement
of the laser source without altering the orientation of the beam path after the fiber,
and thus without affecting the position of the FORT!. A lot of care has been taken
for the setup of the optical path after the cleaning fiber aiming at un undisturbed
Gaussian beam profile in the focal position of the FORT where the atoms are trapped.
Using the out-coupling optics of the cleaning fiber and another achromatic lens, the

1The specific type of the cleaning fiber used is not suited for optical powers about 3.5 W, above
which the transmitted power saturates. This currently limits the maximum trap depth of the
FORT. It should be replaced by a high-power optical fiber.
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expanded FORT beam is collimated to have a waist of about 25 mm. The actual
focussing of the FORT is done by a second achromatic lens with a focal lens of
f = 1000mm (THORLABS, AC508-200-B). 1t is this lens, which is mounted on
an air bearing translation stage, and by this enables to transport the atoms from
the center of the main chamber into the glass cell. For a sufficient passive pointing
stability of the FORT, the opto-mechanics of all optical components along the beam
path is rigidly constructed, in particular the mounts of the 3 inch mirrors guiding the
FORT beam towards the atoms.

Trap parameters

A measurement of the axial and transversal beam profile of the FORT in the vicinity
of the focal position provides all information to characterize the confining potential
of the optical dipole trap, which can be expressed in terms of the Gaussian intensity
distribution of the trapping beam [31, 122]:

Udip(r, 2) = —C(w)I (r, 2) = _C(w)%e—ﬂz/“(z) . (3.8)
Tw?2(z)

Here, P denotes the power of the trapping light and w is the beam waist as a function
of the axial position z. In the focal position, we measure a beam waist of wo =
(22£1) pm. The exact knowledge on this parameter is of great importance since it
strongly affects the experimental determination of other physical quantities, such as
the temperature or the number of particles trapped in the FORT (see chapter 6.4).
The maximum depth of the potential is given by Uy = 2P/7rw(2). In axial direction,
the theoretical Rayleigh length is readily calculated to be zp = ﬂwg/)\: 1.3 mm.
However in our case, the measured axial beam profile deviates from the standard
relation w(z) = wo,/1+ (ZLR)Q, due to a truncation of the trapping beam by the
finite aperture of the final achromatic lens. However, at very low trapping powers, the
overall trapping potential is not only determined by the intensity distribution of the
optical dipole trap, but also by residual magnetic field gradients (Feshbach field, see
section 3.5) and gravity. In particular, the weak axial confinement is affected by these
distortions. For the forced evaporative cooling, we typically apply a homogenous
magnetic field to tune the interparticle collision properties by means of Feshbach
resonances. Indeed, the magnetic Feshbach field applied at the final position in the
glass cell exhibits some residual curvature B” giving rise to an additional harmonic
trapping potential in axial direction:

Unnag(2) = f% g B2 (3.9)
For the pair of Feshbach coils above and below the glass cell (see section 3.5), the
curvature of the magnetic field has been estimated to be B” = 0.048cm~2 - B in
the horizontal plane (z/y-plane). For low optical trapping powers at the end of the
evaporation process, the magnetic trapping potential is the dominating contribution
to the axial confinement. The corresponding harmonic trapping frequency is given
by
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B//
Winag = |/ “BT . (3.10)

In contrast, the magnetic confinement due to the magnetic Feshbach field in the

main chamber does not need to be taken into account, because there, the FORT is
operated at full power and thus the optical confinement dominates over the magnetic
contribution.

Intensity stabilization

As for the resonator trap, evaporative cooling in the FORT also requires precise
control of the intensity of the trapping laser. For the intensity stabilization, we again
monitor a small portion of the trapping light on a photodiode and use a PID servo
loop that acts on an AOM placed in front of the cleaning fiber of the FORT. This
task, however, turns out to be even more challenging since the FORT intensity needs
to be regulated over more than three orders of magnitude from 3.5 W down to below
10 mW. In order to achieve a nearly constant PID gain over the full regulation power,
we employ logarithmic amplifiers for the power detection. Details of the logarithmic
power control can be found in [105].

3.4.3 Optical transport

Exploiting the principle of optical tweezers, atoms confined in the FORT follow the
focal position when it is moved in space. We use this mechanism to transport the
pre-cooled atomic sample over a distance of 268.8 mm from the MOT position in
the main chamber to the center of the octagonal glass cell. The corresponding shift
of the focus is done by moving the final achromatic lens (f = 1000 mm) in the
optical path of the FORT. For this, the achromatic lens is mounted on a linear
air bearing stage (AEROTEC, Model AERABL20030-M-10-NC) that provides a
maximum travel of 300 mm and whose translation profile can be precisely controlled
with a position accuracy of better than 1 um. For the transport, we drive a smooth
velocity profile with moderate accelerating and decelerating forces which must not
exceed the restoring forces of the dipole trap in axial direction. During the transport,
the FORT is operated at a power of about 2.0 W, corresponding to a trap depth of
about Ugj, = kg 300 uK. In total, the transport takes 500 ms, for which we do not
observe a significant heating or spilling of the cold atomic sample. Experimentally,
even shorter transport times with accelerations above the gravitational acceleration
g are possible and would not lead to higher particle loss rates, but cause vibrations
on the experimental table which we want to avoid for other technical reasons. We
also checked that the continuous air flow of the translation stage does not influence
the performance of our apparatus.

To obtain reliable and reproducible experimental data, the transport rate has to be
reproducible over many experimental cycles. For this, the position of the dipole trap
in the glass cell - given by the maximum of the magnetic Feshbach field inside the
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glass cell - is actively stabilized. A quadrant photodiode measures the actual position
of the optical dipole trap, whereupon a PI loop corrects for deviations via a piezo-
driven mirror placed along the optical path of the dipole trap. With this stabilization
scheme, we achieve a standard deviation in the FORT position of less than 1 um. The
PI loop is realized with a field programmable gate array (National Instruments, NI
9264/9205/9401), details of which are given in [123, 124].

3.5 Magnetic fields

Our experimental setup involves an elaborate system of several magnetic coils for
different tasks: for laser cooling, magneto-optical trapping, gradient fields, levita-
tion and for tuning the scattering properties of the lithium gas. An overview of all
magnetic coils, except the Zeeman slower, is given in Fig. 3.11. For the design of
our solenoid system, we paid attention that the mounting of the coils does not have
contact to the vacuum setup and the optical system. Fig. 3.11 also shows the rigid
construction of the coil holders, robust against disturbing influences of mechanical
vibrations caused by switching the magnetic fields. A detailed characterization of
the coil setup can be found in the PhD thesis of Bruno Zimmermann [105]. Here,
we restrict ourselves to a summarizing description, providing only the most essential
technical information.

auxiliary coils: offset coils  jump coil levitation coil  cloverleaf coil

main coils: MOT Feshbach coil (FBy) Feshbach coils (FB2) Helmholtz
coils around main chamber around glass cell coils (HH)

Fig. 3.11: Overview of the magnetic coil system. The setup can be divided into
main and auxiliary coils, depending on the current at which they are operated.
All main coils are driven with a current of more than 10 A provided by a single
power supply. The auxiliary coils are operated by less than 2 A, each driven by
a separate power supply.
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3.5.1 Main coils

As main coils we denote those solenoids of our apparatus which are driven by currents
of more than 10 A, and therefore need to be actively cooled. Apart from the Zeeman
slower coil, they are all operated by a single power supply (FA Elektro-Automatik,
EA PA-PS-9080-300, Imax = 300A, Umax = 80V). The active current stabiliza-
tion in each of the main coils is accomplished by a PID feedback loop that measures
inductively the actual current and reports deviations from the set value to a regu-
lation unit. The latter is realized by a self-designed switch box based on insulated
gate bipolar transistors (IGBT), allowing to branch and precisely control the driving
current for the different coils [105].

Zeeman slower and MOT coils For the field configuration and design of the Zeeman
slower and MOT coils, we refer to the preceding sections 3.3.2 and 3.3.3, where we
have already presented the corresponding technical details.

Feshbach coils around main chamber The scattering length of SLi atoms van-
ishes at zero magnetic field. However, evaporative cooling requires sufficient re-
thermalization mediated by collisions. Thus, we apply a constant magnetic offset
field to tune the scattering properties by means of the 6Li Feshbach resonance. For
the evaporative pre-cooling in the resonator trap, we usually work at a magnetic field
of 300 G, yielding an s-wave scattering length of about —300 ag. To achieve this field
strength at the position of the atoms using moderate currents, the Feshbach coils
FB; are embedded in the inlets of the top and bottom CF200 flanges of the main
chamber, as close as possible to the atoms (see also Fig. 3.3). Each coil is made
up of 99 windings (4 layers) of 4 x 4mm? copper wire, providing a magnetic field
of 3.5 G/A. The square profile is hollow, with an inner diameter of 2.5 mm, through
which we run cooling water for efficient removal of resistive heat.

Feshbach coils around glass cell Similarly, another pair of Feshbach solenoids
(FB2) is mounted in close vicinity of the glass cell, allowing us to tune the scat-
tering properties of a spin-mixture Fermi gas over the full range of interest, i.e. from
zero scattering length at zero magnetic field to beyond the BEC-BCS crossover regime
above 1000 G (see Fig. 2.3). Each coil is composed of 146 windings in total, exhibiting
a T-shaped cross-section profile. We used the same hollow copper wire as for FB;
for water cooling. The FBy solenoids generate a magnetic field of 8.629 G/A at the
center of the glass cell. However, the separation of the two coils is larger than for a
Helmholtz configuration, giving rise to a field curvature of B” = 0.048 cm~2. B in the
horizontal plane and twice this value in vertical direction. The resulting magnetic
confinement caused by this field curvature (see equation (3.9)) becomes more and
more relevant when the optical confinement is decreasing. This harmonic magnetic
trap is the dominating confinement along the axial direction of the FORT for very
shallow optical trap depths, as has already been discussed in section 3.4.2.
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Helmholtz coils around glass cell An additional pair of coils is wound around the
Feshbach coil FBo that provides a nearly homogeneous magnetic field of 5.42 G/A at
the center of the glass cell. We denote this solenoid as Helmholtz coil (HH), whose
55 windings per solenoid are also made up of the same hollow copper wire.

3.5.2 Auxiliary coils

Besides the main solenoids, several small auxiliary coils were installed at our appa-
ratus, disposed for various additional tasks. The windings of these coils are made of
enameled round cooper wire (@1 mm). As current source, we use three power supplies
from STATRON (Mod. 3240.2, remote controlled by computer). Another switching
board based on MOS-FETs branches the current for the different auxiliary solenoids.
The offset coils around the MOT are not actively cooled by water and can thus only
be operated for a few seconds within the experimental cycle. In contrast, the other
auxiliary coils are thermally coupled to the main coils, providing sufficient cooling.

MOT offset coils Experimentally, the position of the MOT center is set by the min-
imum of the magnetic quadrupole field and the Zeeman slower axis. Actually, this
point does not coincide with the mode volume of the running wave dipole trap, which
in turn is spatially fixed by the position of the resonator mirrors. Offset coils along
the -, y- and z-axis of the main chamber allow us to shift the position of the trapped
atoms after the MOT loading to any position of the resonator mode within a range
of a few centimeters. The windings for the two offset coils along the Zeeman slower
axis and for the single offset coil along the z-axis are supported by separated hold-
ers, whereas the wire for the offset field in vertical direction is wound on top of the
cylindrical shell of the Feshbach coils FB;. For each coil, we wound as much wire as
possible according to the amount of available space. The exact number of spooled
windings is unknown, but also irrelevant. The required driving currents of about 2 A,
to shift the MOT into the right position, have been determined experimentally.

Levitation coils Each spool carrier of the solenoid system above and below the
glass cell supports about 80 windings of @1 mm copper wire that are driven by 2 A in
opposite direction. The resulting magnetic field gradient in vertical direction is used
to compensate for gravitation by levitating the atomic sample.

Jump coils A similar coil pair, driven in Helmholtz configuration, produces a ho-
mogenous magnetic field of up to 300 G. Due to the small dimensions, their small
inductance allows a fast switching of the overall homogenous magnetic field if rapid
changes are needed.

Cloverleaf coils Each spool carrier above and below the glass cell contains four small
solenoids arranged in cloverleaf configuration as shown in Fig. 3.11. This system is
designed to generate magnetic field gradients in the focal plane of the microscope
setup. Details are given in [125].
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3.6 Imaging techniques

The majority of diagnostic techniques for ultracold quantum gases relies on optical
probing. Owing to a very diversified spectrum of applications, the different methods
can be classified into several categories: photon-counting and imaging, in-situ and
time-of-flight (TOF), destructive and non-destructive, absorptive and dispersive. A
very comprehensive introduction to optical probing tools for cold atoms is given
in [126]. Among these, destructive absorption imaging is the most commonly applied
method to image ensembles of ultracold atoms, which provides important information
about the atom number N and the density distribution n(z,y, z). Absorption imaging
is also the standard imaging tool for all experiments throughout this thesis. In
addition, we developed a new interferometric detection method making use of the
dispersive interaction between atoms and light. In the following, we treat these
two methods. For other techniques, like phase-contrast, dark ground or fluorescence
imaging, we refer the reader to [126].

3.6.1 Absorption imaging

Absorption imaging bases on the idea to image the intensity profile of a resonant
laser beam that has been partially absorbed by the atomic cloud. From the recorded
light intensity profile, one can then deduce the column integrated atomic density
ﬁ(:{:,y) = fn(ac,y, z)dz. When passing the cloud, the intensity I of the imaging
beam is reduced according to the law of Lambert-Beer:

g =n(z,y,2)o0(z)dz, (3.11)

where n(z) is the particle density and o(z) the scattering cross section. In general, the
scattering cross section depends on the light intensity and therefore on the position
within the cloud via

1
1+ I(}cyyyz) + (WI:/“QJO)Z '

sat

o(z,y,2) = oo (3.12)

2
Here, o9 = % is the polarization averaged scattering cross section of a closed

imaging transition with resonance wavelength A, saturation intensity Isat, and natural
linewidth I'. The detuning of the probe laser frequency w from the resonant transition
frequency wo is given by w — wg. For imaging with resonant light, equation (3.11)
can be exactly solved in the two limiting cases of low (I < Isat) and high (I > Isat)
saturation.

Low saturation

At very low saturation (I < Isat), the scattering cross section becomes independent
of the intensity, o(z,y, z) = oo, which results in
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I(z,y) = Io(z,y) e °° Jrevas (3.13)

For absorption imaging during one experimental cycle, we typically take three pictures
of the probe light intensity in series. The first corresponds to the actual absorption
image Iatoms, where probe light has passed through the cloud, the second is a reference
picture recording the intensity distribution Iyignt of the probe beam without atoms
present, and the third monitors the background I,z in the absence of atoms and
imaging light. From these images, we determine the relative transmission T'(z,y) for
the further analysis:

Tatoms — Ibg

t(z,y) = (3.14)

Ibright - Ibg .
Experimentally, these different intensity distributions are mapped on the chip of
a CCD (charged coupled device) camera by means of a lens imaging system with a
certain magnification factor M. According to (3.13) and (3.14), the number of atoms,
contained in the probe volume along the line of sight of one camera pixel of size A is
then given by

Npix(z,y) = — soll In ¢(z,y). (3.15)
The quantity — In T'(z,y) corresponds to the optical density OD of the atomic sample

which contains all information about the particle density.

High saturation

For a highly saturating imaging beam (I >> Isat), the scattering cross section can be
o0lsat

approximated by o(z) = O and equation (3.11) is solved by

I(z,y) = Io(z,y) — Isat - 00 /n(z7 y,z)dz, (3.16)
providing in a similar way the detected atom number per camera pixel

A Iy
UOM2 Isat

Npix(x7y) = - (1 _T(:va))' (317)

Further information on experimental techniques for strong saturation absorption
imaging of dense clouds of ultracold atoms can be found in [127].

Remarks on absorption imaging

Although analytical solutions exist for the two intensity limits, the exact determina-
tion of the atom number by means of absorption imaging is still delicate. Here, we
summarize some remaining issues, in particular with respect to 6Li:
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o Typically, a quantum degenerate Fermi gases trapped in the FORT reaches a
peak density of 1012 — 1013 atoms/cm?3, which makes in-situ measurements of
the atom number rather susceptible to errors, even in the above cases of very low
and high imaging intensities. In [128], critical values of the imaging intensities
Irit are given, beyond which the relative error between the measured and the
actual atom number is lower than 5%. However, this error can usually only
be kept small at the expense of a bad signal to noise ratio. For low saturation
(Ierit < 0.4 Isat), the optical density becomes so high that most of the photons
are absorbed in the cloud. In contrast, high saturation (Icrit > 25 - Isat) results
in low optical densities (<0.25) and hence in rather faint absorption images.

« In general, imaging of 6Li atoms is more challenging and delicate than imaging
of other alkali atoms. Due to its low mass, 6Li atoms acquire a large recoil

2

% = h (2w - 73.7kHz) per scattered photon of the resonant

wavelength A = 27 /k = 670.971 nm. Hence, by scattering only a few photons,

energy Erecoil =

the Doppler shift Awpg = %(1 + cos ) already drives the atoms out of reso-
nance even for low saturation. Here, 6 denotes the angle of the re-emission of
a spontaneous photon in a random direction with respect to the imaging axis.
In the experiments on density fluctuations presented in chapter 6, we apply
absorption imaging with a light intensity equal to (15 & 1)% of the saturation
intensity. In a simulation we could show that the Doppler effect then leads
to a reduction of the absorption cross section to about 0.9, which has been
necessarily accounted for in the data analysis.

¢ Alternatively, the density distribution can also be measured in time-of-flight, af-
ter ballistic expansion. However, this method only works for weakly interacting
Fermi gases, because strong interactions preclude the sample from free ballis-
tic expansion, but rather alter the density distribution during time of flight.
Hence, there exists no analytical scaling expressions (see section 2.1.1) that al-
lows to relate the experimentally accessible column density back to the in-trap
three-dimensional density distribution [3, 126].

Summarizing the above remarks, we usually aim to perform absorption imaging of
6Li at low saturation intensities. In order to attain a still reasonable signal to noise
ration, we trade off shorter imaging times (illumination times) against higher imaging

intensities.

3.6.2 Dispersive probing

In the previous discussion, we have only considered the absorptive part of atom-light
interactions. A light field Ey that enters and exists the atomic cloud does not only
experience an attenuation t, but also acquires a phase shift ¢ due to the real part
of the complex index of refraction. For weak probe light, both processes change the
output light field E according to

E=t Fg- e, (3.18)
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depending on the column density n., as well as on the scattering cross section og:

Ncol00 1
- - 3.19
oxp ( 2 1454402 ) (3.19)

Ncol00 20
_ _ 3.20
¢ 2 1454462 (3.20)

Here, § = #0 is the detuning of the laser in units of the linewidth I". On resonance,
the imaging light is only absorbed and does not acquire a phase shift. In contrast,
for an increasing detuning dispersion occurs while the imaged object becomes more
and more transparent. Experimentally, we use a CCD camera to detect the scattered
and unscattered light, which is only sensitive to the light intensity oc \E|2 In order
to encode the information stored in the acquired phase shift, it has to be converted
into intensity information which is the purpose of dispersive imaging. In general, any
dispersive imaging technique aims to separate unscattered and scattered components
of the probe light and to manipulate both independently. In phase-contrast [129, 130]
and dark-ground [130] imaging, this separation is accomplished by spatially filtering
both components in the Fourier plane of the imaging system. An overview of these two
imaging techniques is given in [126]. Another method, so-called polarization-contrast
imaging [131, 132] relies on the different phase shifts for orthogonal polarizations of
the probing light. By placing a polarizer in the imaging path after the transmission
through the atoms, both polarizations can first be separated and subsequently be
re-combined to interfere with each other. The resulting interference signal eventually
contains the desired information about the phase shift.

In chapter 7 of this thesis, we present a new interferometric imaging technique based
on the principle of dispersive polarization-contrast imaging. As any other dispersive
imaging, this method is advantageous because the amount of heat deposited into the
atoms by the probing light is about 300 times lower than it would be the case for an
equivalent absorption image. This huge decrease in heat transfer gives us the ability
to repeatedly probe the atomic sample in a nearly non-destructive way.

3.6.3 Optical setup for standard imaging

Most of our experiments are performed at magnetic fields well above 150 G as there
the tunability of the interparticle scattering length by external magnetic fields enters
the experimentally most interesting regime (see Fig. 2.3). At these fields, Li atoms
are in the Paschen-Back regime, where the nuclear spin is completely decoupled from
the electron spin. Typically, we work with a two-component quantum gas in an
incoherent spin mixture of the two lowest lying hyperfine sub-states of the F = 1/2
manifold which differ only in the nuclear spin orientation mj;. For both ground
states with (ms = —1/2,my = £1/2), there exists an almost closed transition to the
m; = —3/2 state of the 2 P35 excited state, preserving my. Due to the splitting
of about 80 MHz between both ground states, which is moreover nearly constant
over the full range of the Feshbach resonance, both spin states - denoted as |1) and
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|2) - can be selectively addressed and imaged. The optical transition frequency of
this o™ -transition varies by more than 1 GHz over the whole width of the Feshbach
resonance (-1.4 MHz/G), from zero magnetic field to above 1100 G. For the imaging
laser we thus use an offset lock that allows us to tune the imaging light over a range
of 900 MHz (see section 3.3.1).

In the experiments throughout this thesis, we use two different imaging systems to
probe the atomic ensemble at the final position in the glass cell. Both of them are
sketched in Fig. 3.12. One is the high resolution imaging setup along the vertical axis,
which employs one of the two high numerical aperture microscope objectives. This
key feature of our apparatus will be separately addressed in chapter 4. Here, we will
briefly describe our standard imaging system, probing the atomic cloud parallel to the
z-axis in the horizontal plane. This imaging system consists of two achromatic lenses
(fi = 100mm and f> =150 mm) mapping the magnified image (~ x1.5) of the ho-
mogenously illuminated atoms onto a CCD camera (Point Grey, Flea2 Grasshopper,
pixel size 6.45 um). The optical resolution of the imaging system has been estimated
to be about 4 £ 1 um. The polarization of the imaging beam is chosen to be perpen-
dicular to the homogeneous magnetic field generated by the Feshbach coils defining
the quantization axis for the atomic system. This reduces the absorption cross sec-
tion by a factor of two compared to a properly circular polarized beam along the
quantization axis (¢ = g9 = 2 in the low intensity limit).

FORT

CCD camera

' illumination

z
X'PI-
microscope objective v

Fig. 3.12: A collimated imaging beam with a waist of about 1 mm homoge-
nously illuminates the atomic cloud. In absorption imaging, this probe light,
resonant with the lowest hyperfine state of the |25 /2) to [2P3/2) transition, is
collected by the two lens imaging system and mapped on the chip of the CCD
camera. The microscope below the glass cell belongs to the high-resolution
imaging setup described in chapter 4.
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3.7 Experimental sequence towards quantum degeneracy

After having introduced the technology and methods employed in our apparatus, this
section briefly summarizes the experimental procedure used to prepare the object
under investigation of this thesis, an ultracold quantum gas of 6Li atoms. In the first
paragraph, we discuss the different stages of the experimental cycle step by step, and
subsequently present the creation of a quantum degenerate Fermi gas as well as the
formation of a molecular Bose-Einstein condensate.

3.7.1 Experimental cycle

In the introduction of this chapter, we have already roughly outlined the experimental
cycle. The corresponding pictorial illustration is given in Fig. 3.1(a)-(d). The experi-
ment is operated periodically with a cycle time of approximately 12s. In each run, we
prepare a new sample of ultracold fermions which is finally probed by optical means
at the end of each cycle. The robust construction of the apparatus ensures a reliable
and reproducible formation of the quantum gas from run to run, exhibiting only small
fluctuations of the total atom number below 6% over several hours of operation. Each
procedure in the experimental cycle is precisely controlled by several computers. In
total, we use 32 analog and 64 digital output channels to synchronously operate all
devices involved in the sequence. The employed software for the experiment and cam-
era control was developed by our former group member Thilo Stoferle [133], which
enables a clear and adaptable implementation of the experimental sequence and also
an automatic data acquisition.

MOT loading Each experimental cycle starts with loading the magneto-optical trap
(MOT): %Li atoms emanating from the oven with an initial velocity of about 1000 m/s
are decelerated by the Zeeman slower below 70 m/s and subsequently captured in the
MOT at the center of the main UHV chamber (see Fig. 3.1(a)). After 4s of load-
ing and cooling, the MOT typically contains 10° atoms at a temperature of about
200 pK, which is slightly above the Doppler limit of 140 uK for SLi.

Transfer from the MOT into the resonator trap The temperature limit of laser cool-
ing is overcome by all-optical evaporative cooling. For this, the atoms in the MOT are
transferred into the standing-wave optical dipole trap. The transfer efficiency of the
atoms from the MOT into the standing wave optical dipole trap strongly depends on
the final density and temperature achieved in the MOT. For the transfer, we thus ap-
ply a Doppler cooling scheme during the final MOT phase. After having switched off
the Zeeman slower, the loading process of the MOT stops and we spatially compress
the trapped atomic sample by detuning the cooler and repumper laser from -6.5T" to
-2.0T" within 10ms. At the same time, the intensity of the cooling laser is reduced
to 40% of its initial value used for the MOT loading, while the repumper intensity
is even further decreased to 0.2%. All values have been optimized experimentally to
result in the best transfer efficiency. The difference in the final intensity levels of cool-
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ing and repumping light causes an optical pumping of the sample into the F' = 1/2
manifold, which eventually is completed by driving the cooling transition for another
6 ms after the repumper has been switched off. This optical pumping is necessary
since elastic collisions of atoms in the F = 3/2 state would otherwise significantly
shorten the lifetime of the sample in the resonator trap. After this procedure, both
mp = +1/2 states are populated with approximately equal probability. During the
entire transfer process, the resonator is operated at its maximum trap depth of about
500 K (MOT position). Under these conditions, we typically transfer up to 9 - 107
atoms from the MOT into the resonator trap.

Evaporative pre-cooling in the resonator trap In the resonator trap, the atomic
sample is evaporatively pre-cooled: Using a first order exponential ramp (time con-
stant 7 = 1.5s) of 2.5s duration, the power of the injection light for the resonator is
reduced to 20% of its initial value. During the evaporation, we apply a magnetic field
of 300G to set the s-wave scattering length for the interstate collisions between the
two hyperfine sub-states |1) and |2) to -300 ag, allowing an efficient re-thermalization.

Transfer from the resonator trap into the running wave dipole trap  During the
evaporative pre-cooling in the resonator trap, the running wave dipole trap (FORT),
whose focal position overlaps with the atoms trapped in the resonator, is already
turned on to the maximum trap depth of about 150 uK, corresponding to 3.5 W light
power (see Fig. 3.1(b)). Consequently, the FORT is continuously loaded during the
evaporation [134]. At the end of the evaporation ramp, the resonator is suddenly
switched off and typically about 1.5 x 10% atoms in each sub-state have been trans-
ferred into the running wave optical dipole trap. We again like to note that loading
the FORT directly from the MOT yields much lower numbers of transferred atoms
and thus the employment of the resonator is indeed essential.

Optical transport into the glass cell For the transport into the glass cell, the mag-
netic Feshbach field in the main chamber is turned off, and the power of the FORT
light is decreased to 2W in order to reduce resonant light scattering. Finally, the
atoms in the optical tweezer are transported into the glass cell by moving the lens
mounted on the translation stage [107] (see Fig. 3.1(c)).

Forced evaporative cooling to quantum degeneracy At the final position in the
glass cell, forced evaporation is performed by decreasing the power in the optical
tweezer from 2 W down to a few mW (see figure 3.1(d)). For this, we use a first order
exponential ramp of 2.5s duration with a time constant of 7 = 4s. This procedure
assures a fast and effective evaporation with a nearly constant n ~ 10 [135, 136], where
n = U/kgT is defined by the ratio between the trap depth U and the temperature T'
of the sample in the trap. Depending on the magnetic field applied during cooling,
the evaporation process either results in the formation of a quantum degenerate Fermi
gas or a molecular Bose-Einstein condensate. In the following two paragraphs, we
present the experimental demonstration of both.
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3.7.2 Quantum degenerate, non-interacting Fermi gas

For the formation of a quantum degenerate, non-interacting Fermi gas, we apply a
magnetic field of 300 G during the final evaporation, corresponding to a scattering
length of -300 ag between state |1) and |2). When the final trap depth is reached,
the atomic ensemble is allowed to thermalize for 160 ms. We then ramp the magnetic
field to 528 G in 150 ms, where the scattering length is approximately zero [81]. At
the same time the power of the trapping beam is slightly increased to avoid further
particle losses due to free evaporation. This procedure finally results in the formation
of a quantum degenerate Fermi gas of typically a few times 10° atoms in each of the
two lowest hyperfine sub-states. For the determination of the particle number and
final temperature, the atomic ensemble is released from the trap. After 1.5 ms of
TOF, the expanded cloud is imaged by means of absorption imaging. As described
in chapter 2.1.1, the total particle number and the temperature can be determined by
fitting an appropriate function (see equation (2.7)) to the recorded column density.
Fig. 3.13(a) and Fig. 3.13(b) show the absorption images (insets) and the vertically
integrated column density distribution of the expanding Fermi gas for two different
final evaporation levels. We intentionally chose low atom numbers for this measure-
ment, achieving low optical densities, which justifies the assumption that the atomic
column density is proportional to the optical density doing absorption imaging. More-
over, we approximate the Gaussian shape of the dipole trap by a harmonic oscillator,
which is typically possible for these low atom numbers and temperatures. Therefore,
equation (2.8) can be applied to determine the relative temperature T/Tx. The tem-
perature of the sample shown in Fig. 3.13(a) is about 0.157 /Ty, while it is 0.237T/Tg
in Fig. 3.13(b). Such an ultracold Fermi gas with nearly negligible interactions is the
starting point for the investigation of density fluctuations in chapter 6.
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Fig. 3.13: (a)and (b): Vertically integrated density profiles of a non-interacting
Fermi gas for two different evaporation levels, resulting from absorption images
(insets) of the expanding atom cloud after 1.5 ms time of flight. The images
only show one spin component, here state |1). From a fit (black line) according
to equation (2.7), we obtain the corresponding atom numbers, which are 10,000
and 30,000 in (a) and (b), respectively.
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3.7.3 Bose-Einstein condensate of molecules

Alternatively, a molecular Bose-Einstein condensate (BEC) of two composite fermions
in the two spin states |1) and |2) can be created when the final forced evaporative
cooling is performed near the Feshbach resonance of ®Li, at a magnetic field of about
790 G. At this field, the inter-state scattering rate amounts to 9100 ag. There, a large
number of bosonic dimers are formed by three-body recombination. Note that three-
body recombination in a two-component Fermi gas is actually expected to be strongly
suppressed. However, it was shown that three-body recombination close to a Fesh-
bach resonance nevertheless exists and scales like the sixth power of the scattering
length [137], and thus is strongly enhancing the molecule production. During evapo-
ration, the thermal energy of the atoms falls below the binding energy of the weakly
bound molecules (see chapter 2.2.2), and the atom-molecule equilibrium favors the
molecular state. These molecules are stable [75, 76, 138, 139], although the inter-
molecular scattering length is still large, being 0.6 times the value for free atoms [87].
In addition, the polarizability of the molecules is twice as large as compared to free
atoms, and thus they experience twice the trap depth, whereas the trapping frequen-
cies are the same for molecules and atoms. Hence, evaporative cooling first makes
only free atoms to leave the FORT, while the molecules stay in the trap. Further
reduction of the trapping potential leads to the evaporation of molecules and finally
causes the bosonic molecules to condense into a molecular BEC when the phase space
density exceeds unity [50, 51, 52].

Bose-Einstein condensation in dilute gases of weakly interacting particles can be
theoretically treated in the framework of the Gross-Pitaevskii equation (GPE), a
non-linear Schrédinger equation of the form

2
(2hmV2 V) + 9N0|1/’(7")|2> Y(r) = p(r). (3.21)

Here, V(r) denotes the external trapping potential, Ny the total number of bosonic
particles, u the chemical potential, and g = 4mwah?/m the coupling constant deter-
mined by the s-wave scattering length as defined in chapter 2.2. In general, the
Gross-Pitaevskii equation is hard to solve and in most cases only numerical solutions
can be found. However, the Gross-Pitaevskii equation can be simplified for systems
with large particle numbers in which in addition the kinetic energy is negligible com-
pared to the mean field interaction energy. For BECs of Liy molecules of about
10 particles in our case, this so-called Thomas-Fermi approximation is reasonably
applicable and yields

(V(") + 9N0|1Z)TF(7‘)\2) Yrr(r) = prr Yrr(r), (3.22)

which has the solution

nrr(r) = [¢rr(r)]? = max (M,O) (3.23)
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Fig. 3.14: Molecular Bose-Einstein condensation (a) and (b): Absorption im-
age (insets) and vertically integrated column densities for two different final
evaporations levels. In (a) the condensate fraction amounts to 0.72, whereas in
(b) it is below 0.3. The absolute temperatures are 260 nK and 310 nK respec-
tively. Note that both figures only reveal the absorption signal from one spin
component, whereas the imaging transition frequency for the second component
is detuned by about 80 MHz.

For an harmonic trapping potential, the density distribution of the BEC thus has
the shape of an inverted parabola. Further information about the theory and also
experimental aspects of Bose-Einstein condensation is given for instance in [72, 73].

One standard method for detecting the onset of Bose-Einstein condensation is the
observation of a bimodal density distribution which the expanded cloud reveals after
a certain time of flight (TOF): while the condensed fraction of molecules exhibits a
parabolic profile, thermal, non-condensed molecules give rise to a Gaussian density
distribution. From the ratio between both contributions, we can deduce the conden-
sate fraction No/N, the number of condensed molecules Np and the temperature of
the gas. In the experiment, the cloud is released from the FORT and expands at a
magnetic field of 776 G, corresponding to a scattering length of 5900 ag. The mag-
netic field has been reduced during TOF to decrease the mean field energy and thus
the expansion of the condensed fraction which makes the bimodal distribution more
pronounced. After a TOF of 3.5 ms, the molecules are resonantly imaged at the given
magnetic field of 776 G. The corresponding column density profiles and absorption
images for two different final trap depths are shown in Fig. 3.14(a) and Fig. 3.14(b).
A bimodal fit (black line) yields the total atom number N, the condensate fraction
No/N and the absolute temperature. Both distributions show a deviation from the
thermal distribution (gray line) indicating partial condensation at different conden-
sate fractions.
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4 Microscope setup

Pursuing the object of this thesis to advance a local access to ultracold quantum
gases, this and the following chapter are devoted to the main feature of our appara-
tus, the high-resolution optical system which is schematically illustrated in Fig. 4.1.
Key element of this optical setup is a pair of identical, high-resolution microscope
objectives facing each other above and below the glass cell. While the lower micro-
scope objective allows to locally probe the trapped quantum gas with a maximum
resolution of 660 nm, the upper microscope is an essential part of a versatile optical
system used to generate microscopically tailored optical dipole potentials on the same
length scale.

Here, we provide a detailed technical description of the microscope objectives and the
supporting opto-mechanics. The remaining sections then focus on the experimental
characterization of the optical performance, in particular on the precise determination
of the optical resolution and the magnification of the high-resolution imaging system.
The experimental realization of the optical micro-potentials as well as the preparation
and detection of fermionic atoms trapped therein will be separately discussed in
chapter 5.

Parts of this and the following chapter are published in [140]: B. Zimmermann*,
T. Miller*, J. Meineke, T. Esslinger, and H. Moritz, ’High-resolution imaging of
ultracold fermions in microscopically tailored optical potentials’, New Journal of
Physics 13(4), 043007 (2011). *These authors contributed equally to the presented
work.

4.1 Microscope objectives

The development of a microscope objective, which meets the demanded requirements
listed in the general design considerations at the beginning of the previous chapter,
needs a wide experience in optical engineering. This becomes immediately evident
when looking at the various parameters that can be exploited to match all specifying
demands. Already the multitude of different glass materials or the total number of
involved lenses with different possible shapes suggest the size of the full parameter
range. For this reason, we decided for a professional custom-made design, provided
and manufactured by SPECIAL OPTICS.

71



4. MICROSCOPE SETUP

4.1.1 Objective design

Each of the two identical, long-working-distance microscope objectives is based on a
system of 7 lenses as depicted in Fig. 4.2(a). The infinite-conjugate configuration is
designed for three operating wavelengths at 532nm, 671 nm and 770 nm, correcting
aberrations of all three wavelengths. Furthermore, the objectives are corrected for
a view through the 4 mm thick quartz window of the glass cell.
has an effective focal length of fog = 18 mm, and covers a numerical aperture of
NA = 0.53. This yields a theoretical diffraction limit of 650 nm (full-width at half-
maximum, FWHM) for an imaging wavelength of 671 nm (see section 4.2.2). All
optical surfaces are anti-reflection coated for the above wavelengths (reflectivity <

0.75%) and additionally for 1064 nm (reflectivity < 2%).
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Fig. 4.1: Two identical microscope objectives represent the heart of the high-
resolution optical system: The microscope objective below the glass cell and the
telephoto objective belong to the high-resolution imaging setup. Probe light,
resonant to the |25y /2) to |2Ps/2) transition of SLi, is collected by the micro-
scope objective and imaged on an electron-multiplying CCD camera (EMCCD).
The second microscope objective is part of the optical system for generating
arbitrary optical micro-potentials. A two-axis acousto-optical deflector gen-
erates several, far off-resonant laser beams in a programmable way. Each of
those beams is focussed by the microscope objective, resulting in a controllable
pattern of multiple optical tweezers in the focal plane. The inset shows a real
photo of the glass cell with the two microscope objectives.
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4.1. MICROSCOPE OBJECTIVES

The lens system is mounted in a custom-made housing manufactured from Ultem 2300
(see Fig. 4.2(b)). The fiber-enforced plastic material is non-magnetic and non-
conducting, thus ensuring an undisturbed operation of the microscopes in the vicinity
of the magnetic coils around the glass cell. Both, the fabrication of the housing as
well as the mounting of the lenses was carried out by SPECIAL OPTICS. The as-
sembling of all parts requires extraordinary accuracy for a maximum performance,
for which reason a test specimen of the glass cell window was also involved during
the assembly of the objective. The relative position of all lenses is fixed by precisely
fabricated spacers in between, while the whole lens stack is clamped into the housing
by a retaining ring.

CY (b)

microscope objective  glass cell

i
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5.36 mm 4.00 mm

retaining ring
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Fig. 4.2: Design and housing of the microscope objective. (a) Sectional draw-
ing of the lens stack, reflecting the dimensions of the microscope objective and
its close distance to the glass cell window (shortest distance 1.5 mm). The or-
ange lines indicate the beam trace when exploiting the full numerical aperture
of NA = 0.53. Lenses 2 to 5 are made of CaF3, whereas lens 1 consists of
0O-S-BSM81 and lens 7 of SFL56 (b) Sectional model of the non-magnetic lens
housing and the glass cell, showing details on the mounting of the 7 lenses with
spacers and a retaining ring.

4.1.2 Objective mounting

We achieve the specified maximum optical performance at the diffraction limit (RMS
wavefront error < 7% of the wavelength) by an accurate alignment of each micro-
scope objective. From a ray tracing simulation with OSLO (Optics Software for
Layout and Optimization, Lambda Research), we computed the required constraints
for the absolute position accuracy. According to the simulation, the constraints only
allow a displacement from the optical axis by less than 1 mm, a de-focussing smaller
than 3 pm, and a tilt of the microscope axis with respect to the normal of the glass
cell below 0.1°. To meet these conditions, the mounting of the microscope objec-
tive includes a coarse and fine adjustment along five axes. The tilting along two
perpendicular axes can be adjusted with a goniometer (NEWPORT, M-TTNS0)
without altering the height of the mount along the central axis. This tilt platform
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4. MICROSCOPE SETUP

has a centrical aperture with an inside thread holding the microscope tube made of
machinable glass-ceramic (MACOR). This thread permits a coarse focussing of the
microscope objective in axial direction (750 pm per revolution). The transverse coarse
adjustment is performed by a two-axis translation stage (OWIS, KT90), also with a
centrical aperture. For the fine adjustment in transverse and axial direction, we use
a compact, piezo-driven three-dimensional translation stage (Piezo Jena, Tritor 102
SG EXT) with a maximum translation distance of 100 um and a resolution of 3 nm.
This device includes a strain gauge to measure the absolute position along each axis.
Via a digital proportional-integral controller based on a field programmable gate ar-
ray (National Instruments, NI 9264,/9205/9401) [123, 124], the error in position is

MA-plate

goniometer

3 axes piezo
transl. stage

transl. stage
(coarse)

MACOR tube

upper
microscope
objective

glass cell

lower
microscope
objective

MACOR tube

goniometer

3 axes piezo
transl. stage
mirror holder

transl. stage
(coarse)

AM4-plate

Fig. 4.3: Opto-mechanics of the microscope objectives: The left figure is a sec-
tional drawing of the microscope objectives attached to the respective ceramic
holding tubes. Both tubes support A/4 retardation plates (LENS-Optics, mul-
tiple order, free aperture 28 mm) to change the polarization of the probe and
trapping light. The lower MACOR tube consists of two parts to facilitate the
installation of the microscope (see appendix E). The right figure is an isometric
view of the full opto-mechanics involved to mount the microscopes. Not shown
are the magnetic coils below and above the glass cell.
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4.2. HIGH-RESOLUTION IMAGING

fed back to the piezo stage to actively stabilize the transverse and axial position of
the setup. The passive stability of the goniometer is sufficient to keep the tilt angles
within the constraints.

4.2 High-resolution imaging

The new apparatus presented in this thesis offers for the first time the ability to
observe an ultracold atomic Fermi gas on a sub-micron length scale, an experimental
challenge which to our knowledge has only been met for bosonic systems so far. The
employed high-resolution imaging system is sketched in the lower part of Fig. 4.1,
underneath the glass cell. It consists of three components along the optical axis: The
lower microscope objective, a telephoto objective and an electron-multiplying CCD
camera (EMCCD). In the following, we first give a brief description of the telephoto
objective and the CCD camera, followed by the characterization of the high-resolution
imaging setup.

4.2.1 Optical setup

Fig. 4.1 illustrates the configuration of the different components involved in the high-
resolution imaging setup. Probe light coming from above is collected by the micro-
scope objective, reflected by a 2" mirror (high-reflective for 532 nm, 671-780 nm, and
1064 nm) into the horizontal plane and finally focussed onto the CCD camera by the
telephoto objective. This special configuration, in particular the employment of the
telephoto objective, helps to meet two opposing demands on the imaging system: a
high magnification factor on the one hand, and sufficient geometrical stability on the
other hand. By definition, the theoretical magnification factor of a microscope setup
is given by the ratio of the focal lengths of the imaging ocular and the microscope
objective. With an effective focal length of 18 mm for the microscope objective, the
demanded magnification implies a focal length of at least 720 mm. However, such
a long focal length of the ocular may impair the pointing stability of the projected
image on the CCD camera from shot to shot, which in contrast is indispensable as our
measurements in many cases rely on a high reproducibility of repeated data acquisi-
tion. This issue is overcome by the telephoto objective which produces an effective
system focal length longer than the back focal distance [141]. While the effective focal
length defines the magnification, the back focal distance determines the separation
between the telephoto objective and the detection device (camera). In our setup, the
microscope objective is mounted 1.2mm below the glass cell, followed by the tele-
photo objective at a distance of about 430 mm. The EMCCD camera is placed in the
focal plane of the telephoto objective, about 450 mm (back focal distance) behind its
last lens.
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4. MICROSCOPE SETUP

Telephoto objective

The telephoto objective was also designed and fabricated by SPECIAL OPTICS
which allowed the optical engineer to model the telephoto objective for an optimum
joint operation with the microscope objective at the diffraction limit. A sectional
drawing of the telephoto objective is given in Fig. 4.4. The infinite-conjugate 3-lens
design has an effective focal length of 975 mm and also corrects aberrations at the
wavelengths of 532 nm, 671 nm and 770 nm. Similar to the microscope objectives, the
3 lenses are mounted in a non-magnetic and non-conducting housing (Ultem 2300)
using spacers and a retaining ring. All lens surfaces are AR-coated for the same
wavelengths as the microscope objective.

4.21

?—1.88.—>I
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©1.38

spacer retaining ring

Fig. 4.4: Cross-sectional drawing of the telephoto objective. The given num-
bers indicate length scales in units of inch. Lenses 1 and 3 are made of CaFs,
and lens 2 of SF6.

The constraints for the accurate alignment of the telephoto objective are less restric-
tive than for the microscope objective. Without significant reduction of the resolution,
the adjustment of the telescope objective tolerates a tilt angle of +0.5° and a dis-
placement of +1 mm, both with respect to the main optical axis. The axial position
is even less critical. Here, a de-focussing of 60 mm towards the microscope objective
and 30 mm towards the camera are still within the constraints. For the alignment of
the telephoto objective, we use a 4-axis positioner (SPECIAL OPTICS, Mod. 60-10-
100) and a linear translation stage for the focussing in axial direction (NEWPORT,
Mod. M-UMR12.40A). Due to the less restrictive constraints, the passive stability of
the opto-mechanics for the telephoto objective is sufficient.

EMCCD camera

For the detection of the imaging light, we use a back-illuminated EMCCD camera
(ANDOR, iXon 897, quantum efficiency > 0.9). Due to the magnification factor of
about 54 (see next section), each pixel (16 um x 16 um) thus corresponds to about
300nmx300nm in the object plane. Using the electron multiplier detected signals
on the level of a few incoming photons are amplified well above the read-out noise of
the CCD camera.
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4.2. HIGH-RESOLUTION IMAGING

4.2.2 Optical performance

The optical performance of the imaging setup was characterized in a separate test
setup similar to the original setup in Fig. 4.1. Here, the glass cell was replaced by
two specimen of the glass cell window, mounted with exactly the same separation as
the top and bottom plate of the glass cell. Right in between the two glass windows,
we mounted a test target that enabled us to determine the magnification and the
resolution of the imaging setup, i.e. the combination of microscope objective and
telephoto objective. As test target we used a gold foil grating consisting of holes with
a diameter of 650 nm and a relative distance of 20 pum, which we got on loan from
the group of M. Oberthaler, Heidelberg. A SEM (scanning electron microscope)
micrograph of the target can be found in [142]. For the characterization of the
microscope setup, we homogeneously illuminated the gold foil with laser light at
A = 671 nm from above and analyze the recorded images of the hole pattern.

Magnification

Theoretically, the magnification factor M of our microscope system is defined by the
ratio between the effective focal lengths of the telephoto objective fiele = 975 mm
and the microscope objective fmic = 18 mm,

M= Jiele ~54.2. (4.1)
mic
Experimentally, we determined the magnification by fitting the hole pattern in the
image of the gold foil with a multiple-spot 2D Gaussian function yielding the hole
separation in the image ((1080 + 4) pm). Comparing this value with the SEM mea-
surement of the separation in the actual object ((20 & 0.04) pm) [142], we obtain a
magnification factor of 54.0 £ 0.2, in good agreement with the estimated value.

Resolution

Physically, the resolution of our imaging system is fundamentally limited by diffrac-
tion. Even a point-like object gives rise to a blurred image which corresponds to
the specific diffraction pattern known as Airy disk. In general, the resolution of an
imaging system is defined by the minimum distance between two points at which they
are still distinguishable in the image. Various criterions can be found in literature
quantifying the definition of ’spatially distinguishable’ in different ways. Most com-
monly, the Rayleigh criterion is applied. According to this, two adjacent point-like
sources at distance Ar are still resolvable when the first minimum of the Airy disc in
the diffraction limited image of one source coincides with the maximum of the other.
The Rayleigh criterion directly connects the resolution Ar to the numerical aperture
NA of the imaging system and the imaging wavelength A [141]:

A
ATRayleigh = 0-61m . (4.2)
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4. MICROSCOPE SETUP

The manufacturer specified the NA of our imaging system to be 0.53, yielding a
theoretical resolution of about Argayleigh = 770nm at a wavelength of 670 nm. Ex-
perimentally, the gold foil test target allows a convenient way to determine the actual
resolution of the imaging system. Since the diameter of the holes is smaller than the
expected optical resolution, a single uniformly-illuminated hole can be considered to
be a point-like light source. Assuming aberration free imaging, Fourier optics [143]
states that the diffraction limited image of a given object corresponds to the convo-
lution of the object with the so-called point spread function (PSF) of the imaging
system. For a diffraction limited imaging system, the latter can be expressed in
terms of the first order Bessel function Ji () containing the resolution ArRayleigh as
argument:

2 J1 (1.220 %)

PSE() = = o

(4.3)

We determine the resolution of our imaging system comparing the real image of a
single hole in the gold foil with a simulation of the expected image [142]. The real
image is taken with the imaging system focussed onto the target. Experimentally,
the exact focal position follows from a Gaussian fit to the intensity distribution of
the imaged hole upon variation of the axial positions of the microscope objective.
The axial position related to the smallest fitted waist identifies the correct focussing
of the microscope. For the simulated image, we approximate the hole in the gold
foil by a circle with a diameter of 650 nm, and then do a coherent convolution of the
circle with the Airy-like PSF given in (4.3). Subsequently, we calculate the RMS
(Root Mean Square) deviation between the real and simulated image. Thereby, we
vary the assumed resolution of the PSF as well as the relative position of the overlap
between both images. The optimum combination of position and resolution showing
the smallest RMS deviation determines the resolution. For our imaging system, this
two-dimensional best-fit analysis yields a maximum resolution of 780 + 5nm at a
wavelength of A = 671 nm. This is also in very good agreement with the expected
value for a diffraction limited imaging system according to the Rayleigh criterion
equation (4.4).

The FWHM (full-width at half-maximum) criterion defines the resolution in a differ-
ent way than the Rayleigh criterion. Here, the resolution is defined by the minimum
FWHM spot size resulting from the diffraction limited imaging of a point-like source.
It is given by

A
A =0.5145—— 4.4
TFWHM NA ( )

Applying this definition, our imaging systems offers a maximum resolution of about
660 nm (FWHM) for a wavelength of 671 nm. Expressing the resolution in terms of
the FWHM criterion enables a direct comparison to [6] and [7].
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4.2. HIGH-RESOLUTION IMAGING

Depth of field

With the focussing procedure for the microscope as described above, it is also possible
to deduce the depth of field of the imaging system. This procedure yields the Gaussian
waist fitted to the image of a single hole as a function of the axial position of the
microscope objective. Due to the well calibrated strain gauge of the piezo translation
stage, the relative position of the microscope objective can be expressed in absolute
units of micrometers. As a standard, the depth of field is defined as twice the range
in which the fitted waist is increased by a factor of v/2. For our imaging system,
this amounts to about 3.5 um at maximum resolution. At the expense of a reduced
resolution, the depth of field can be increased by artificially decreasing the numerical
aperture of the imaging system. We typically do this by putting an iris in between
the microscope objective and the telephoto objective.

Chromatic shift

We also measured the chromatic axial focal shift for the three operating wavelengths
by determining the corresponding focal position of the microscope for each wave-
length. We obtained an overall chromatic axial focal shift below 500 nm.

Field of view

According to the specifications of the manufacturer and verified by a computational
ray trace analysis, our high-resolution imaging system spans a field of view of 100 pm x
100 pm. Here, this number is physically motivated by the contrast and defined as
the region in the object plane, in which a sharp picture of the object is acquired.
Due to the finite size of the CCD chip (512 x 512 pixels, pixel size 16 um) and the
large magnification, the region of the object plane which is captured by our optical

CY (b)
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Fig. 4.5: (a) Standard absorption image of the in-trap density distribution of
a non-interacting Fermi gas confined in the FORT. The magnified (~ X1.5)
picture is recorded with the imaging system along the z-axis of the experiment
(see Fig. 3.12), offering a resolution of the order of 4 pm. (b) In-situ image
of an identical prepared cloud, taken through the microscope along the z-axis
with a magnification factor of 54 and a spatial resolution of about 700 nm. In
both images, the black/white bars indicate absolute length scales in the object
plane.
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4. MICROSCOPE SETUP

system is limited to 150 pm X 150 um. As a result, our microscope imaging setup only
records a small sub-part of the full atom cloud. When it is trapped in the FORT,
the cloud typically has an extension of 20 — 30 um in the radial direction and about
500 um in the axial direction. Fig. 4.5 illustrates this situation. There, we contrast a
standard absorption image of a trapped, non-interacting Fermi gas (a), recorded by
the setup shown in Fig. 3.12, with a high-resolution in-situ image as seen through
the microscope setup (b). These kind of highly resolved absorption images of the
in-trap density distribution will be investigated in chapter 6 to deduce the density
fluctuations of a weakly interacting Fermi gas.
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5 Microscopically tailored optical po-
tentials

It is due to the development of sophisticated tools and techniques to manipulate
the external degrees of freedoms that by now ultracold atoms have become one of
the best controllable quantum systems. In particular, appropriate methods for the
storage and trapping of particles play a crucial role as the confinement directly in-
fluences the atomic motion and also the dimensionality of a system. In particular,
optical traps have proven to offer versatile opportunities to control and manipulate
atomic quantum gases. Among those, optical lattices constitute a very prominent
and successful example [32, 34]. As pointed out in the introduction of this thesis,
ultracold atoms in optical lattices have paved the way into the strongly interacting
regime and moreover provide an almost ideal experimental realization of the Hubbard
model with highly tunable parameters [35]. Very recently, even single site resolution
imaging has been achieved for bosonic systems [7, 36, 37]. Yet, the concept of optical
lattices created by interfering laser fields is by design restricted to the investigation of
periodic systems with a high degree of symmetry. Various approaches towards more
flexible and locally controllable geometries for optical potentials have been reported,
for example double wells [144, 145], ring traps [146, 147], ring lattices [147, 148], box
potentials [149] and finite lattice patterns [147, 148, 150]. Most of these realizations
technically employ special optical devices to shape and deflect Gaussian laser beams
such as phase plates [151], acousto-optical deflectors [147] and spatial light modu-
lators [146]. However, most realizations so far still lack the ability to shape optical
potentials on length scales comparable to the interatomic distance. Hence, tunneling
processes and dynamics are correspondingly very slow. In addition, all experiments
mentioned above have been performed with bosonic atoms, and to our knowledge,
experiments with fermions have not been reported yet.

Here, we present the first experimental realization of ultracold fermions in micro-
scopically tailored optical potentials. The key tool for this is the upper part of our
high-resolution optical system which employs one of the microscope objectives and
a two-axis acousto-optical deflector. In the following, we first describe the basic
concept and the experimental setup used to create static as well as time-averaged
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5. MICROSCOPICALLY TAILORED OPTICAL POTENTIALS

optical dipole potentials on the sub-micrometer length scale. We then demonstrate
the site-by-site creation and characterization of several trapping geometries including
a tightly focussed single optical dipole trap, a 4x4-site two-dimensional optical lattice
and a 8-site ring lattice configuration. In the last part, we show the ability to load
and detect a small number of fermions in these projected trapping potentials.

5.1 Generation of optical micro-potentials

5.1.1 Basic concept

Like in other work [147, 148, 152, 153], we employ a two-axis acousto-optical deflec-
tor (AOD) to tailor optical dipole potentials. In principle, the AOD deflects and
frequency shifts a red-detuned laser beam proportional to the radio-frequency (RF)
fed into the AOD, while at the same time the beam intensity can be controlled via
the amount of applied RF power. The deflected beam - enlarged by telescope optics
- is then focussed by the upper microscope objective to form a single, small volume
optical dipole trap with a waist on a sub-micron length scale.

Different deflection angles caused by different RF input frequencies result in different
positions of the tweezer in the focal plane of the microscope objective because the
latter works as a Fourier transformer. The speciality of a two-axis AOD is that
it is able to deflect the tweezer along two orthogonal axes and, moreover, can be
driven by multiple RF frequencies along each axis at the same time. Doing so, a
bunch of laser beams, resulting from the convolution in the two-dimensional deflection
process, leaves the AOD, and gives rise to versatile two-dimensional multiple spot
patterns in the focal plane of the microscope. Fig. 5.1 illustrates this principle,
showing the formation of a 2x2 tweezer system overlapped with a trapped cloud of
cold atoms. Alternatively, a single tweezer can be rapidly scanned in the focal plane of
the microscope which allows to - nearly literally taken - paint arbitrary time-averaged
trapping potentials in two dimensions. In section 5.2 we demonstrate experimental
examples of both, static as well as time-averaged potentials.

5.1.2 Optical setup

The optical setup used to create the micro-potentials is depicted in the upper part of
Fig. 4.1, above the glass cell. In detail, we use a two-axis deflector from IntraAction
Corp. (Model A2D-603AHF3A, center frequency 60 MHz, 3 mm aperture) which in-
corporates a special acoustic phased-array beam-steering design in order to maintain
a uniform diffraction efficiency (80%) across the deflection bandwidth of 30 MHz (val-
ues for operation on only one axis). Additionally, the short access time (~276 ns/mm
beam diameter) of the AOD readily allows for time-averaged potentials. As a RF-
source we employ a Universal-Software-Radio-Peripheral-2 (USRP-2), a computer-
hosted hardware originally intended to make software radios. It is controlled via
the gnuradio software [154, 155] and enables a flexible generation of arbitrary wave
forms with a bandwidth of 25 MHz around a central frequency (60 MHz). A detailed
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5.1. GENERATION OF OPTICAL MICRO-POTENTIALS

description of the design will be presented in the PhD-thesis of my co-worker J.
Meineke [156], who set up the USRP-2 system for our experiment.

As trapping light, we use red-detuned light at a wavelength of 767 nm, provided by
a tapered amplifier laser. A collimated beam at this wavelength, with a waist of
1.2mm, enters the AOD and is deflected into the (-15¢/-15%)-order for each applied
RF frequency. Subsequently, the deflected beams are expanded by a two-lens tele-
scope to a maximum waist of 12.5mm to exploit the full numerical aperture of the
optical system. The microscope objective finally focusses each of these collimated
beams to a diffraction limited spot size of about 730 nm. Using the opto-mechanical
mounting for the microscope objective described in section 4.1.2, the resulting micro-
trap pattern can be precisely aligned and position-stabilized onto the atomic sample
in the transport dipole trap (see Fig. 4.1), which serves as a reservoir to load the
micro-traps.

microscope objective

micro-tweezers

2x 2 lattice pattern in focal plane

quantum gas trapped in FORT

Fig. 5.1: Basic principle to create multiple-spot micro-traps exemplarily
demonstrating a square lattice configuration. A two-axis acousto-optical deflec-
tor provides four laser beam that are focussed by the microscope objective to
form a 2x2 array of optical tweezers. By overlapping these tweezers with a cold
atomic cloud trapped in the FORT, the micro-trap pattern can be loaded with
atoms. Note: This illustration is not to scale. In particular, due to the high
numerical aperture of the microscope objective, the strongly focussed beams
diverge in a much stronger way than it is drawn. Depending on the relative
separation, the individual beam profiles may already overlap within the atomic
cloud.
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5.2 Optical micro-potentials

As a unique feature of our optical system, the special configuration of the two identical
microscopes in line allows us to directly monitor the optical potential landscape. In
particular, the high-resolution imaging setup below the glass cell accurately maps the
position, dimensions and intensity distribution of the trapping light pattern shaped
by the optical setup above the glass cell. Using this information, we are able to
characterize the trap geometry in terms of waists, spacings, trap depths and trap
frequencies. Moving the imaging setup out of the focus of the upper microscope also
provides insight into trap parameters along the beam propagation direction. In the
following we exemplarily demonstrate the characterization of a single spot Gaussian
micro-trap.

5.2.1 Single spot micro-trap

Fig. 5.2(a) shows the focal, two-dimensional intensity distribution of a single spot
created by the upper microscope and imaged with high resolution onto the EMCCD
camera by the lower microscope. Fitting a Gaussian function to the measured in-
tensity profiles along the z- and y-axis yields a spot size with a waist (1/e?-radius)
of wy = 734nm and wy, = 726 nm, respectively (see Fig. 5.2(b)). By moving the
imaging system along the beam propagation direction we measure the longitudinal
intensity profile which allows us to extract the Rayleigh length of the micro-trap. For
the given example in Fig. 5.2(a), we obtain a Rayleigh length of ~ 2.1 pm.

With these parameters and a light power of 0.1 mW, an optical dipole trap with a
calculated depth of 18.6 uK for 6Li atoms is created (see equation (3.8)). The bottom
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Fig. 5.2: (a) High-resolution image of a single-spot dipole trap in its focal plane
(wavelength 767 nm), illustrating the capability of the optical system to map
and characterize the optical potential landscape. For the imaging, a bandpass
filter for 671 nm light in front of the CCD camera is removed which normally
blocks the trapping light in the infra-red (767 nm) when only the atoms trapped
in the optical potential are to be imaged. (b) Intensity profile of the single spot
along the z-axis. A Gaussian fit to the two-dimensional intensity distribution
yields the corresponding waists of the micro-trap.
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of such a Gaussian trap is well approximated by a harmonic potential up to about
20% of the trap depth. Doing so, the corresponding trapping frequencies for the above
example amount to w; = 27-69.5 kHz and wy = 27-70.2kHz in radial direction, and
wz = 2m-16.5kHz along the axial confinement. The total number of states in a
harmonic trapping potential at zero temperature with energy less than e is given by
G(e) = %W (see for example [72]). According to this, for 0.1 mW light power
the single-spot dipole trap only offers approximately one available state up to the
energy level equal to 20% of the trap depth. Experimentally the situation is different.
When we load atoms into the micro-potential (see section 5.3), nearly all energy levels
up to the edge of the trap depth are populated, where the density of states is strongly
increased. For the given parameters, an interpolating expression [122] for the number
of single particle eigenstates of a Gaussian trap yields about 700 available states up
to 99% of the trap depth.

5.2.2 Multiple spot micro-traps

Fig. 5.3 and Fig. 5.4 illustrate a selection of possible multiple-spot potential patterns
realized with our setup. The first one represents an example for a static micro-
trap system, whereas the latter is due to a time-averaged projection of two static
configurations. In both cases, the presented images are again direct maps of the
potentials in their focal plane, imaged onto the EMCCD camera.

Two-dimensional finite optical lattice

Applying four RF frequencies to each axis of the 2D AOD at the same time results
in a static 4x4 beam diffraction pattern in the (-15t/-15)-diffraction order. In the
focal plane of the upper microscope, this pattern yields a square array of 4x4 dipole
traps, realizing a finite-size, two-dimensional optical lattice system. In particular,
this lattice configuration is homogeneous, in contrast to optical lattices created by
interfering laser beams, for which the Gaussian profile of the interfering laser beams
gives rise to an extra overall confinement. Often, this additional confinement causes
challenges in the comparison between theory and experiment. In Fig. 5.3(a), we
present the experimental realization of a static 4x4-site square lattice configuration.
In detail, the four applied RF frequencies are symmetrically arranged around the
center frequency of 58 MHz, separated by 7MHz. In real space, this corresponds to
a lattice site separation of approximately 3 um in the focal plane.

Smaller lattice spacings can be achieved with smaller RF frequency separations (see
Fig. 5.3(b-e)). Due to the spatial resolution of the imaging system, we are able
to resolve lattice spacings down to one micrometer as can be seen in Fig. 5.3(e).
The spacing can be changed dynamically even during one experimental cycle, thus
enabling for instances the tuning of tunneling dynamics within one experiment. In-
creasing the number of applied RF frequencies easily enlarges this two-dimensional
lattice pattern to a maximum size of 8x8 sites, limited by the finite RF deflection
bandwidth of the AOD.
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Fig. 5.3: High-resolution images of a 4x4 site 2D lattice configuration with
different lattice spacings: (a) 3 pm, (b) 2.5 pm, (¢) 2.1 um, (d) 1.8 pm, and (e)
1.2 pm. Each lattice site has a Gaussian spot size of approximately 800 nm
(1/e?-radius). This spot size is slightly larger than for the single spot shown
in figure 5.2 since here, as well as for the ring lattice shown in figure 5.4,
the numerical aperture of the upper microscope was reduced facilitating the
alignment for this first demonstration. (f) Vertical and horizontal line sum
profiles of the selected region in (c), marked in blue and red, respectively. The
partial inhomogeneity in the intensity of different lattice sites results from an
inhomogeneous diffraction efficiency within the RF bandwidth of the two-axis
AOD. This inhomogeneity can be minimized, since the RF power for each RF
frequency can be individually controlled, independently for both axes.

The tunneling rates for 6Li atoms populating the lowest Bloch band of the lattice
pattern can be estimated using [157]. For this, we approximate the 4x4 spots by an
appropriate two-dimensional sinusoidal potential whose periodicity Aj,t¢ corresponds
to the spot separation. According to [157], the tunneling rate ¢ to a nearest neighbor
lattice site is given by

i 4
Y

where Vj corresponds to the lattice depth in units of the lattice-related recoil energy

V3 exp (—2 VO) , (5.1)

2
Erecoil = # For the given configuration in Fig. 5.3(e), with a lattice spacing of

of about 800 Hz. In combination with the ability to tune the interparticle interactions
via Feshbach resonances, these already substantial tunneling rates provide a prospect
for the realization of Hubbard-model like physics in such finite-size, homogenous
lattice systems.
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Ring lattice

Apart from static potentials, our setup also enables the generation of time-averaged
optical potentials by alternately projecting different trapping geometries onto the
atoms. For this, the switching rate between the different trap configurations has
to exceed the corresponding trapping frequency significantly in order to display a
static trapping potential for the atoms. In Fig. 5.4, we give an example of such a
time-averaged optical potential. Here, we switch periodically with a frequency of
500 kHz between two different rectangular 2x2 lattice configurations. This results in
a 8-site ring lattice structure as schematically depicted in Fig. 5.4(a). Fig. 5.4(b)
presents the realization of this ring lattice with our setup, showing the corresponding
light intensity distribution in the focal plane. In the given case, the ring diameter
measures ~ 6.9 um with an approximate spot size of 800 nm for each lattice site. This
value is slightly above the achievable minimal spot size, as we did not use the full
numerical aperture of the optical system for the given example. As demonstrated for
the square lattice configuration in the previous section, the site separation in the ring
lattice can also be controlled arbitrarily down to about one micrometer, which is not
shown here.

@ e, .

. time averaged
500 kHz """"" @=6.9 um

Fig. 5.4: (a) Simulation data illustrating the generation of a time-averaged
ring lattice: two 2x2 rectangular square lattices - arranged perpendicular to
each other around a common symmetry axis - are alternately projected onto
the atoms. The switching frequency between the two configurations is 500 kHz,
well above the trapping frequency of each individual lattice site. (b) Real data
image showing the light intensity distribution of the resulting 8-site ring lattice
with a diameter of 6.9 pm.

5.3 Atoms in micro-potentials

5.3.1 Loading the micro-traps

The micro-trap patterns are filled from the reservoir of cold atoms captured in the
optical dipole trap (FORT) which is used for the transport and the final evaporative
cooling in the glass cell. For this, the transport beam and the micro-traps are spatially
superimposed as sketched in Fig. 5.1. Fig. 5.5(a) corresponds to the experimental
implementation, showing an in-situ absorption image of the center part of the atomic
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sample held in the FORT (black region). On top, a 4x4 lattice is imprinted whose
intensity distribution is simultaneously imaged, here appearing as white dots. For
the transfer of atoms, we smoothly ramp up the power of the micro-trap potential to
its final value (about 100 uW per site) in 200 ms and then switch off the transport
trap rapidly.

5.3.2 Single-site resolved imaging

Imaging atoms in the micro-traps is challenging as the individual tightly focussed laser
beams spatially overlap at a certain distance along the axial direction, depending
on their separation. Moreover, the atoms typically populate energy levels up the
edge of the trap right after the transfer. Using resonant absorption imaging along
the microscope axis, the individual atomic samples in different trapping potentials
therefore appear as a continuous shadow cast on the CCD camera. However, the filling
of the micro-traps can be reduced by sending resonant light onto the atoms prior to
the imaging. For this purpose, we apply a resonant light pulse of 4 us at one tenth
of the 6Li saturation intensity (2.54mW/cm?) onto the sample. This removes the
atoms in trap regions of shallow potential depth and only leaves atoms in the tightly
confining center. By a second resonant light pulse (24 us) at twice the saturation
intensity, the remaining atoms are then imaged through the microscope setup onto
the CCD camera. Fig. 5.5(b) shows the in-situ absorption image of the remaining
atoms trapped in a 4x4 two-dimensional square lattice. Here, the site separation
amounts to 2.5 pm, which is easily resolved by the imaging setup.

Fig. 5.5: (a) 4x4-site 2D optical lattice superimposed to a fermionic atom
cloud trapped in the transport dipole trap. For this image, the bandpass filter
for 671 nm in front of the CCD camera was removed, allowing to image both
the trapped atom cloud with resonant absorption imaging at 671 nm and the
focal light intensity distribution of the 4x4 lattice at 767 nm. (b) Resonant
absorption image of atoms trapped in the lattice structure after a preparatory
resonant light pulse was applied which removed atoms in the shallow trapping
regions. (c) Off-resonant imaging of the same system, red-detuned by ~ 10T
with respect to the upper hyperfine ground state of SLi (illumination time:
12 ps). The lattice spacing in (b) and (c) is 2.5 pum. (d) Equivalent red-detuned
imaging of atoms trapped in the 8-site ring lattice pattern (diameter 6.9 pm)
given in Fig. 5.4. All images are divided by a reference image taken without
atoms being present.
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Alternatively, due to the high optical density the atoms can also be imaged with
off-resonant laser light, which only reveals the atoms captured in the center of each
micro-trap. For this, we red-detune the imaging light driving the |25, /) to [2P3/2)
transition by about 10" with respect to the second lowest hyperfine sub-state of
SLi. Here, I' = 5.9 MHz is the natural line width of the D2 transition of 6Li. The
resulting off-resonant dispersive image can be seen in Fig. 5.5(c), where the atoms in
the different trap centers of the 4x4 lattice appear as well separated dark spots. In
this case, a preparatory resonant light pulse in advance is not required. We applied
the same off-resonant imaging technique to atoms trapped in the 8-site ring lattice
structure of Fig. 5.5(b) (see Fig. 5.5(d)).

The number of trapped atoms can be estimated in a time of flight (TOF) measure-
ment: Having released the trapped sample from the confining optical potential, we
image the expanding cloud after a certain TOF by means of resonant absorption
imaging through the microscope. From a fit to the detected density profile we deter-
mine the total atom number. For the given situation in Fig. 5.5(c), the fit gives an
upper limit of 300 atoms per lattice site.

5.3.3 Lifetime in micro-traps

We also determined the lifetime of the trapped sample in a separate experiment,
measuring the remaining atom number for different hold times in the trap. The
corresponding data are shown in Fig. 5.6. For the static potential (see Fig. 5.6(a)),
we observe a two-stage loss process of the trapped atoms. In an initial fast decay on a
short timescale (~100 ms), the atom number is approximately reduced by a factor of
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Fig. 5.6: Lifetime measurement of a weakly interacting Fermi gas trapped in
different micro-trap configurations. (a) shows the measured particle decay from
the static 4x4 square lattice system of Fig. 5.5(b). The solid and dashed curves
are first order exponential fits for the first 800 ms and the subsequent hold
time, respectively. (b) Corresponding particle decay for the time-averaged ring
lattice configuration of Fig. 5.5(d). In contrast to (a), we observe a single-stage
decay process only, fitted by a first order exponential model (black line).
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2. Subsequently, the population decays exponentially on a longer timescale, yielding
a lifetime of 800ms. For the time-averaged ring lattice (see Fig. 5.6(b)), we find
shorter lifetimes of about 100 ms.

A recent measurement of inelastic collisions in a two-component Fermi gas prepared
in the strongly interacting BEC-BCS crossover [158] showed that two- and three-
body collisions give rise to particle losses on a time scale well above one second.
Our samples have a comparable density, yet are weakly interacting (a = —300ag)
and hence the effect of three-body collisions on the observed lifetime is expected to
be negligible. In addition, we can exclude light scattering to affect the lifetime of
the trapped sample. For the given trap parameters, the photon scattering rate is
0.25 Hz per atom. Most likely, the particle loss is caused by free evaporation from
the initially completely filled micro-traps. Moreover, the intensity of the micro-trap
was not actively stabilized for the presented measurement, possibly causing spilling
of particles from the trap due to fluctuations in the trap depth. The even faster
loss rates observed for the ring lattice potential are probably induced by heating of
the sample due to the fact that this particular trapping configuration results from a
time-averaged projection of two rectangular lattice patterns. Further investigation is
needed to fully understand the observed lifetimes.

5.4 Summary

In conclusion, we have presented an experimental setup with two high-resolution
microscope objectives that allows us to optically probe and prepare an ultracold
Fermi gas on the microscopic length scale of the Fermi wavelength. Employing a 2D
acousto-optical deflector, we have demonstrated the site-by-site generation of a finite
two-dimensional square lattice and a 8-site ring lattice configuration. Moreover, we
have shown the capability to load small numbers of atoms into these optical micro-
potentials and to detect them with single-site resolution.

An immediate, although non-trivial extension of this work would be the measurement
of the temperature in the micro-traps. Currently, the measured particle numbers
and the known trap geometry should lead to a Fermi temperature close to the trap
depth which gives us confidence in the assumption that the trapped sample might be
quantum degenerate.

The expected substantial tunneling amplitudes for Li atoms in combination with the
possibility to tune the inter-particle interactions via Feshbach resonances promises a
possible realization of Hubbard-model like physics beyond the standard optical lattice
approach with interfering laser beams. While the site-by-site creation of lattice sites
has the advantage of the intrinsic absence of additional external confinement, it also
offers the ability to generate lattice systems of low symmetry or systems with inherent
defects. In addition, our setup holds the potential for single-site addressability allow-
ing the individual manipulation of atoms in different trap spots [36, 150, 159, 160].
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6 Local observation of antibunching

The Pauli exclusion principle states one of the most fundamental principles in physics,
ubiquitous in any Fermi system. In the research field of ultracold atoms, several
outstanding experiments have provided evidence for effects of Pauli suppression in
Fermi gases: indirect manifestations of the Pauli principle have been observed by
the suppression of elastic atomic collisions [161], clock shifts in radio frequency
spectroscopy [162], and in the spatially modified extension of a degenerate Fermi
gas affected by Pauli pressure [39]. Moreover, measurements of two-particle anti-
correlations in Hanbury Brown-Twiss experiments with superfluid 3He [96] and ul-
tracold fermions in optical lattice [20] revealed fermionic antibunching in an interfer-
ometric way. However, a direct manifestation of antibunching in real space has not
yet been demonstrated.

In this chapter, we report on the direct visualization of the Pauli exclusion principle
in real space via high-resolution in-situ measurements of density fluctuations in an
ultracold Fermi gas of weakly interacting 5Li atoms. From a number of absorption im-
ages recorded under the same experimental conditions, we extract the mean and the
variance of the density profile. Our measurements show that the density fluctuations
in the center of the trap are suppressed for a quantum degenerate gas as compared
to a non-degenerate gas. This manifestation of antibunching is a direct result of the
Pauli principle and constitutes a local probe of quantum degeneracy. We analyze our
data using the predictions of the fluctuation-dissipation theorem, which relates the
density fluctuations of the gas to its isothermal compressibility. Thereby, we demon-
strate a new technique for a fluctuation-based temperature measurement [26, 27, 100].

Parts of this chapter are published in [93]: T. Miiller, B. Zimmermann, J. Meineke,
J.-P. Brantut, T. Esslinger, and H. Moritz, 'Local Observation of Antibunching in a
Trapped Fermi Gas’, Phys. Rev. Lett. 105, 040401 (2010). This publication [93]
and a related work by C. Sanner, et al. at the MIT [163] have been highligthed by a
"Viewpoint’ in the APS journal Physcis [164] and by a 'newséviews’ article in Nature
Physics [165].
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6.1 Introduction

A finite-size system in thermodynamic equilibrium with its surrounding shows char-
acteristic fluctuations as it has been discussed in chapter 2.4. These fluctuations carry
important information about the quantum statistical and thermodynamic properties
of the system as a whole. Suppose we have a large-volume ideal gas and probe a small
subvolume within it in different temperature regimes. In a classical thermal gas, par-
ticles are distinguishable and uncorrelated, and hence the repeated measurement of
the particle number contained in the probe volume would yield a Poissonian distri-
bution for the particle fluctuations. However, as soon as quantum mechanics comes
into play at low temperatures, particle fluctuations are fundamentally governed by
the specific quantum statistics and the many-body state of the constituent particles.
Most striking, particles become identical and thus subject to quantum mechanical
exchange symmetry. For bosons, positive density correlations build up, until Bose-
Einstein condensation occurs. This effect is commonly denoted as bunching and gives
rise to enhanced density fluctuations when the particles in the fictitious probe volume
above are bosons at sufficient low temperatures. In contrast, fermions obey the Pauli
exclusion principle suppressing any process that requires two fermions to occupy the
same quantum state. As a consequence, this induces anti-correlation between the
particles and leads to the effect known as fermionic antibunching. Thus, fluctuation
of particle numbers in an ideal Fermi gas are squeezed below the Poissonian shot
noise level.

6.2 Probing density fluctuations in a trapped Fermi gas

Although the effect of the Pauli suppression on density fluctuations seems to obvi-
ous by theory, antibunching apparently turns out to be intrinsically difficult to be
directly observed in real space. In general, measurements of density fluctuations in
a specific probe volume can be performed either on a trapped sample, i.e. in-situ,
or after free ballistic expansion which maintains the phase space density and thus
only leads to a re-scaling of the characteristic fluctuations according to a distinctive
scaling transformation. The latter method has been successfully applied in [163] to
measure the suppression of density fluctuations in a nearly non-interacting quantum
degenerate Fermi gas. However, the time-of-flight expansion of a Fermi gas with
notable interparticle interactions is highly non-ballistic, and thus a re-scaling of the
measured density fluctuations back to the initial in-trap situation becomes impossi-
ble. Hence, free ballistic expansion method is only applicable to a restricted number
of systems. In contrast, in-situ probing circumvents all these limiting constraints and
is thus applicable to a larger variety of physical systems [27]. Yet, in-situ probing
generally requires high spatial resolution, for which our microscope setup presented
in chapter 4 is ideally suited.
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6.2.1 Preparation and measurement procedure

We first describe the experimental procedure to prepare the object under investi-
gation, a weakly-interacting Fermi gas of about 6 x 10% SLi atoms equally pop-
ulating the two lowest hyperfine sub-states (|]1) = |mjy=—1/2,m;=1) and |2) =
|mj=—1/2,m;=0)). Following the method described in chapter 3.7, the atoms are
loaded into an optical dipole trap created by a far off-resonant laser with a wavelength
of 1064 nm, focused to a 1/e2?-radius of (2241) um. The cloud is then optically moved
[107] into the octagonal glass cell (see Fig. 6.1). In the glass cell, forced evaporation
is performed by reducing the trap power from initially 2W to 4.7 mW. During evap-
oration a homogeneous magnetic field of 300 G is applied to set the s-wave scattering
length a for inter-state collisions to —300ag. The magnetic field is then ramped
to 475G in 150 ms, changing a to —100ag, and finally the power of the trapping
beam is increased to 10 mW in 100 ms. Alternatively, we prepare the lithium gas at
temperatures above quantum degeneracy. For this, we evaporate to 50 mW before
re-compressing to 100 mW, followed by a 100 ms period of parametric heating. In
both cases, the cloud is allowed to thermalize for 350 ms before an absorption im-
age is taken. Since |kpa| < 1072 with kr the Fermi wave vector, the gas is weakly
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Fig. 6.1: Left: Setup for high-resolution imaging of the trapped ®Li gas. The
shadow cast by the atoms held in the dipole trap is imaged through the micro-
scope objective and a telephoto objective onto an EMCCD chip. The resolution
(1/€%-radius) is 1.8 um at a wavelength of 671 nm and the magnification is 54.
The resolution of the microscope objective has been artificially reduced with a
diaphragm in order to increase the depth of field to the order of the cloud size.
Center: Density distribution (atoms per pixel) of the trapped atoms obtained
by averaging over 20 realizations. The effective pixel size measures 1.2 um, the
maximum optical density is ~ 2. The images which we evaluate are ~ 40 pm
wide showing the center of the cloud, which has a total length of 500 pm. Right:
Construction of the observation volume: A 4 X 4 pixel area defines the probe
volume along the line of sight of the absorption imaging.
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interacting and thus almost ideal.

Our imaging setup is sketched in Fig. 6.1. The probe light, resonant with the lowest
hyperfine state of the |25, /5) to |2P5/5) transition, is collected by the high-resolution
microscope objective and imaged on the electron-multiplying CCD (EMCCD) chip.
The atoms are illuminated for 8 us. Thereby, each atom scatters about 20 photons
on average. Typical data are presented in the upper part of Fig. 6.1. There, we show
the average density distribution obtained from absorption images of 20 experiments.
Since our imaging setup only offers a limited field of view of 100 pm x 100 pm, while
the cloud measures ~ 500 um in axial direction, we only probe the center part of the
cigar-shaped cloud. However, our detection method stands out to be local as will
be demonstrated in the next paragraph, and therefore, the restricted detection area
does not limit the measurement at all.

6.2.2 Data processing

The basic idea of our experiment rests upon the repeated production of a cold Fermi
gas and the determination of the number of atoms contained in a small subvolume
of the full cloud. Evaluating the statistics over the different experimental realization,
we extract the mean and variance of the atomic density within the probe volume.
In the following paragraphs, we provide a detailed discussion of the data processing
which had to be carried out with reasonable care since also other noise sources than
the atomic noise contribute to the raw data, and for which appropriate corrections
must be done. As we will see, the main contribution stems from photon shot noise
owing to the fact that even the same number of atoms does not always scatter the
same number of photons when doing repeated measurements.

Our probe volume is specified as depicted in Fig. 6.1(right). The position of each pixel
in the imaging plane of the camera defines a line of sight intersecting with the atomic
cloud. Correspondingly, each pixel !, having an effective area A, determines our
observation volume in the atomic cloud along its line of sight. On the one hand, this
volume is sufficiently small to be considered as a subsystem in thermal equilibrium
with the remaining part of the cloud in terms of the grand canonical ensemble. On
the other hand, it is also sufficiently large to cover the exchange hole in the fermionic
pair correlation g(2) (7 —r') (see Fig. 2.7). If the observation volume was to small, i.e.
smaller than the distinctive correlation length of the nearly ideal Fermi gas given by
k;l, the measured fluctuations in the probe volume would be lower than expected
from thermodynamics. Thus, we have also adapted the spatial resolution of the
microscope to the size of the effective area A. For the measurements throughout this
chapter, the resolution has been artificially reduced to 1.8 ym, which in turn helps to
increase the depth of field to the order of the cloud size.

In general, the number of atoms in the probe volume is related to the amount of light

1For the present measurement we apply a 4 X 4 software binning of the camera pixels. One
camera pixels has a physical size of 16 um X 16 pum. Due to the 54-fold magnification of the
imaging system, one camera pixel represents an effective area of 300 nmx 300 nm in the object
plane (position of atom cloud). Thus, the binning area A = 1.2 um X 1.2 pm defines the size
of a "pixel" referred to in this chapter.

94



6.2. PROBING DENSITY FLUCTUATIONS IN A TRAPPED FERMI GAS

which passes through the cloud and is finally detected on the camera. This relation is
parameterized by the transmission coefficient ¢. At low saturation, the transmission
t of the probe light through an observation volume containing N atoms reads [108]

t=e o N/A, (6.1)

where o is the photon absorption cross section. As a consequence, for small Gaus-
sian fluctuations of the atom number, the relative fluctuations of the transmission
coefficient are equal to the absolute fluctuations of the optical density and are thus
directly proportional to the number fluctuations. Standard error propagation yields:

2 02
(2;2 = SN2, (6.2)

Here, (At)2, (t) and (AN)? are the variance and the mean of the transmission coef-
ficient, and the variance of the atom number, respectively.

During the detection process, incoming photons are registered by the EMCCD chip,
converted into photoelectrons and finally displayed as electronic counts. Hence, the
repeated measurements of identically prepared clouds provide us with a set of count
numbers C' for each pixel, i.e. each observation volume. Typically, we register ~ 1300
counts, corresponding to ~ 130 photons at the position of the atoms. For each pixel,
we finally compute the variance (AC)2 and mean (C) over a set of images taken
under the same conditions. The relative noise of the counts and the relative noise of
the transmission are related by:

(AC)2 29 (Ap?

€2 (¢ w2

(6.3)

Here, g is the gain of the camera for converting photoelectrons to counts. A deriva-
tion of equation (6.3) is given in appendix C. The first term owes to the contribution
of photon shot noise while the second term is the contribution of atomic noise. The
factor 2 in the photon shot noise term is caused by the electron-multiplying register
[166]. We extract the contribution of the atoms to the relative fluctuations of the
counts, by subtracting photon shot noise on each pixel according to (6.3). This re-
quires the value of g (typically ~ 15), which we determine from the linear relationship
between the variance and the mean of the number of counts in a set of repeated mea-
surements 2. The atom number fluctuations are subsequently obtained from (6.2).
We note, that at this stage no division by a reference image has been performed,
avoiding this source of noise.

2Without applying the 4 X 4 software binning of the camera pixels, photon shot noise is the
dominating contribution to the data while atomic shot noise is nearly undetectable. Thus, the
second term in equation (6.3) is negligible under those conditions, and g is given by the linear
relationship between the variance and the mean of the number of counts. We use this fact, to
determine the value of g. Imaging of the atomic cloud without software binning provides us
with different count values C over the pixel array, from nearly zero at the position of the atoms
to rather high values from regions without atoms. We then deduce the mean and variance for
each pixel over a set of images obtained from repeated measurements. A fit to the slope of the
plot "variance versus mean" finally yields the value of g.
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To reduce technical noise adding to these fluctuations, we reject images showing
the largest deviations of the total atom number or cloud position. For the present
data, images deviating more than 1.5 (1.0) standard deviations, corresponding to
0.72 pm (5%) in the mean position (total atom number). In total, this amounts
to excluding about 30% of the images. The remaining shot-to-shot fluctuations of
the total atom number (ANtot)2 are taken into account by further subtracting the
quantity (ANiot)2/N2,, (N)?2, which is less than < 2% of N [26]. Total probe intensity
variations from shot to shot are below 0.5 %. Applying this algorithm to each pixel
of the images yields the variance of the atom number in different probe volumes and
hence a local measurement of the variance of the atom number along the cloud.

The mean atom number per pixel is calculated by dividing the mean transmission
profile by the mean of reference images taken without atoms after each shot, thus
averaging shot-noise before division. The values for variance and mean, obtained by
applying the above procedures, are then averaged along equipotential lines of the
trap, mainly along the axial direction. These lines deviate from horizontal lines (z3-
axis) in our images by less than half a pixel (0.6 um), and therefore this averaging
process is reasonably justified.

6.3 Manifestation of antibunching in real space

6.3.1 Density fluctuations above and below quantum degeneracy

Fig. 6.2 shows the observed variance of the atom number plotted against the mean
atom number detected on a pixel. The different mean values originate from different
areas in the cloud with more and less particles. For the presented data, we addition-
ally applied a binning of the mean values in groups of similar average atom numbers
and according to this averaged over the variance values in the corresponding bins. For
comparison, we have studied the density fluctuations of the weakly interacting Fermi
gas in two different temperature regimes: one set of data of identically prepared atom
clouds has been taken at temperatures above quantum degeneracy (red squares), i.
e. for a thermal gas with T/TF > 1, the other set of data pertains to a quantum
degenerate gas (blue circles).

Density fluctuations in a thermal Fermi gas

Above quantum degeneracy, the observed variance is found to be proportional to the
mean number of atoms as it is expected for a subvolume of an ideal thermal gas in
thermal equilibrium with its surrounding (see chapter 2.4.1). Moreover, the linear
behavior confirms that the fluctuations originate from atomic shot noise only and
the data processing removes reliably the dominating contribution of the photon shot

noise.

However, the slope of this linear relation between the observed variance and mean
values of the atom number is not equal to one as expected for a Poissonian distribu-
tion. To quantitatively understand the slope of the noise curve, which is fitted to be
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0.20 £ 0.02, two main effects have to be considered which may reduce the observed
variance and explain the deviation from a slope of one. First, the effective size of
the pixel (1.2 um) is of the order of the resolution of the imaging system (1.8 um).
As a consequence, the observed noise is the result of a blurring of the signal over
the neighboring pixels. This effect has also been observed in similar experiments ad-
dressing density fluctuations in bosonic systems [26, 27]. We performed a simulation
accounting for the effect of finite spatial optical resolution and verified the reliability
of this simulation by a variation of the data processing. In general, a larger pixel size
is supposed to increase the slope, because then the spatial volume for the atom count-
ing is larger than the resolution area and blurring over neighboring pixels becomes
suppressed. According to this, we applied a 16 x 16 (instead of 4 x 4) software binning
of the camera pixel which results in an increase of the slope to 0.8 agreeing with the
predictions of our simulation. With respect to the present data, the simulation is able
to explain a reduction factor of 0.22. A larger pixel size, however, implies a worse
signal-to-noise ratio. We therefore proceed with a binning size of 1.2 yum. The second
effect causing a decrease of the slope is related to the intensity of the probe light. The
light intensity used for the detection is (15 & 1)% of the saturation intensity. This
leads to a reduction of the photon absorption cross section due to saturation by a
factor of 0.95 and due to the Doppler-shift by a factor of about 0.9. In combination,
both effects lead us to expect a slope of about 0.19, in good agreement with the
observed slope of 0.20 £ 0.02.
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Fig. 6.2: Observed variance versus mean of the atom number detected on
a pixel. Red squares show the data for a non-degenerate and blue circles
for a quantum degenerate gas. The solid red line is a linear fit to the non-
degenerate gas, yielding a slope of 0.20 + 0.02. For the data shown, 80 experi-
ments were performed, 60 for the degenerate case and 20 for the non-degenerate
case. About 30% of the experiments were excluded. The error bars shown are
estimated from the subtraction of photon shot noise which is the dominant
contribution.
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6. LOCAL OBSERVATION OF ANTIBUNCHING

Density fluctuations in a quantum degenerate Fermi gas

We now turn to the data taken for the quantum degenerate gas (blue circles in
Fig. 6.2). At low densities, the variance is again found to be proportional to the
mean density. For increasingly higher densities, we observe a departure from the
linear behavior and the density fluctuations are well reduced compared to the shot
noise limit seen for the non-degenerate gas. This signature of suppressed density
fluctuations is a clear manifestation of antibunching in our system, appearing as a
direct consequence of the Pauli principle. In a certain way, one can think of the Pauli
principle as giving rise to an interatomic "repulsion", which increases the energy cost
for large density fluctuations. This situation is similar to the case of bosonic systems
with strong interparticle interactions, where observations have shown a reduction
of density fluctuations [26] and squeezing of the fluctuations below the shot noise
limit [27, 167].

6.3.2 Density fluctuation profiles

In contrast to previous measurements on antibunching [20, 96] in atomic Fermi sys-
tems, we have measured density fluctuations in a spatially resolved way. Fig. 6.3
shows the same data for the variance (points/squares) and the mean (solid lines) of
the atom number as Fig. 6.2, however here as a function of the radial position in
the trap. Fig. 6.3(a) and (b) present the data for the thermal gas and the quantum
degenerate Fermi gas, respectively. In both cases, the variance has been re-scaled ac-
cording to the slope fitted in Fig. 6.2. In contrast to Fig. 6.2, the observed variances
along the profile have not been averaged over regions with equal mean density.
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Fig. 6.3: (a)/(b): Spatially resolved measurement of antibunching. The red
(blue) line shows the mean atom number and the red squares (blue circles) the
corresponding variance along the x;-axis for a thermal gas (a9, respectively for
a degenerate gas (b). The variances are re-scaled using the slope fitted in Fig.
6.2. Error bars are estimated from the subtraction of photon shot noise, which
is the dominant contribution. The dashed line shows the variance derived from
theory. The shaded region in (b) indicates the uncertainty originating from
uncertainties in the trap parameters.
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In the thermal gas, the re-scaled variance profile (red squares) fairly follows the mean
density profile (red solid line) due to the Poissonian nature of the shot noise, which
predicts (AN)? = (N). In contrast, for the quantum degenerate gas we observe a
clear reduction of the variance profile (blue dots) with respect to the mean density
profile (blue line). While the variance is proportional to the mean in the wings, at low
density, we measure a reduction of the variance by about 2dB close to the center, at
higher density. The reduction of fluctuations can be interpreted as a direct indication
of the level of quantum degeneracy of the gas. The larger the average occupation of
a single quantum state, the more the effect of the Pauli principle becomes evident
and fluctuations are consequently suppressed. Fig. 6.3(b), which corresponds to the
column integrated analogue of Fig. 2.6, represents thus a direct measurement of the
local quantum degeneracy, which is larger in the center of the cloud than in the wings.

To understand this quantitatively, we describe the atoms contained in an observation
volume in terms of the grand canonical ensemble. In addition, we apply the local
density approximation which gives rise to a local chemical potential as we have dis-
cussed in detail in the course of chapter 2.4.3. For a non-interacting gas, the ratio
of the mean atom number and its variance is determined by the fugacity z of the
system and directly results from the ratio of equations (2.38) and (2.37) given in
chapter 2.4.2. We find the following equation

(A]\f)2 _ fLil/Q(_Z(zl,l'Q))de
(N) fLi3/2(7Z(x1ﬂE2))d:v2 ’

(6.4)

where Li; is the i-th polylogarithm function, z; and x2 are radial coordinates of
the cloud. Since the imaging process yields the column density due to projection
onto the CCD camera, the two integrals account for the corresponding line-of-sight
integration, in the present case along the z2-axis. The red dashed line in Fig. 6.3(b)
describes the variance profile in terms of the grand canonical ensemble and has been
computed using (6.4). For this, we assign the experimentally observed mean profile to
the denominator of the left hand side. Moreover, we need to determine the chemical
potential u(r) = po — V(r) in the local density approximation (see 2.4.3), which
depends on the spatial shape of the trapping potential. In contrast to common
habit, we do not approximate the trap by an harmonic potential, but consider the
correct Gaussian shape of the trap. Additionally, we determine the central fugacity
20 = 13118 in an independent time-of-flight experiment (see below). In conclusion,
the dashed line shows that our description in terms of the grand canonical potential
assuming an ideal gas reproduces the experimental data within the error bars. Note
that, even though adjacent pixels in one image might still be correlated, we do not
run into problems with the grand canonical interpretation, since we first calculate the
variance for each pixel in depth, i.e. over many realizations. By this, the variances
get uncorrelated and averaging is unproblematic.
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6.4 Fluctuation-based thermometry

We now focus on the interpretation of our results in terms of the fluctuation-dissipation
theorem, resuming the discussion of chapter 2.5. At thermal equilibrium, density fluc-
tuations are universally linked to the thermodynamic properties of the gas via the
fluctuation-dissipation theorem, which reads

kBTM = N2 (6.5)
Op

Here, T is the temperature of the gas, u the chemical potential and kg the Boltzmann
constant. Since the local density approximation allows one to assign a local chemical
potential to any position in the trap, it is possible to determine the compressibility
%ﬁ’) directly from the mean density profiles as demonstrated in [27]. Referring to
equation (6.5), the ratio of this quantity to the measured variance profile of the cloud
provides a universal method for fluctuation-based thermometry? as proposed by [100].

We apply this procedure to our data by computing the compressibility,

20 _ o) ()™ 66)
ou ox ox

where we again take the Gaussian shape of the optical dipole trap into account. To

avoid the problems of numerically differentiating experimental data, we fit the mean

density profile with a linear combination of the first six even Hermite functions and use

the fitted curve as a measure of the density profile in equation (6.5) 4. Fig. 6.4 shows

the variance of the atom number plotted against the dimensionless compressibility

Uo aél;l)’ where Up is the trap depth. We observe the linear relation described by
equation (6.5) with a slope of % = 0.27 £ 0.04 for both data sets, the degenerate

and the non-degenerate. From the physics of evaporative cooling it is expected that
both slopes are the same [170], yielding the temperatures in units of the trap depth.
Using the trap depths experimentally derived from the measured laser powers of the
dipole trap, we obtain temperatures of (145 + 31) nK for the quantum degenerate gas
and (1.10 £ 0.06) K non-degenerate gas, respectively.

In order to estimate the accuracy of these values and the quality of this new ther-
mometry method, we have also performed time-of-flight measurements with clouds
prepared under the same conditions. In this method, we determine the temperatures
by fitting the measured density profiles after free expansion of 1.5ms (1 ms for the
non-degenerate gas) to the calculated shape of a non-interacting gas released from a
Gaussian trap. This procedure gives us slightly higher temperatures for the degen-
erate and the non-degenerate clouds, which are (205 + 30)nK (T/Tr = 0.34 £ 0.1)
and (1.6 £0.2) uK (T/Tr = 1.9 £ 0.1), respectively. We attribute the discrepancy
between both temperature measurements mainly to two effects. One effect is due to

3For other fluctuation-based temperature measurements we refer to [168] and [169]
4The difference of this method with the direct numerical differentiation of data (where possible)
is within the error bars.
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the uncertainty in the exact knowledge of the trapping potential, which both meth-
ods are quite sensitive to. A deviation of the measured waist of only 5% to 10%
already causes a doubling of the temperature resulting from the fluctuation-based
thermometry. In contrast, the density profile of a degenerate Fermi gas in the time-of
flight method becomes nearly independent of the temperature, when the gas is highly
degenerate, whereas fluctuations decrease linearly with lower temperatures. Hence,
the fitting-method is for sure less reliable at very low temperatures. The second effect
leading to the observed discrepancy owes to residual experimental fluctuations from
shot to shot which still affect the data even after processing and post-selection.
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Fig. 6.4: Fluctuation-based temperature measurement. Variance of the atom
number detected on an effective pixel versus the dimensionless compressibility.
The blue circles and red squares show the data for the quantum degenerate
and the non-degenerate case, respectively. The dashed red line is fitted to the
red squares, giving the temperature according to equation (6.5).

6.5 Summary

In summary, we have measured in-situ density fluctuations in a trapped Fermi gas
at two different temperatures. At high temperature above quantum degeneracy, we
observe the expected atomic shot noise. Below quantum degeneracy at lower temper-
atures, density fluctuations are suppressed due to the Pauli principle which manifests
a direct signature of antibunching in real space. We note that the suppression effect is
more pronounced at the center of the cloud where the density is higher. This feature
can be interpreted as a local indicator for the level of quantum degeneracy in the gas.
Since our measurements are performed at thermal equilibrium, the variance of the
atom number is related to thermodynamic quantities via the fluctuation-dissipation
theorem. Within the local density approximation, we use the fluctuation-dissipation
theorem to demonstrate a model independent thermometry for cold fermions.

While in the present situation with weak interactions this thermometry is comparable
to the usual time-of-flight method, we expect it to be of particular interest in strongly
interacting clouds where time-of-flight is not tractable. Moreover, fermions unlike
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6. LOCAL OBSERVATION OF ANTIBUNCHING

bosons cannot exhibit first-order long range coherence due to the Pauli principle.
In contrast, when a Fermi system enters a quantum correlated phase, for example
a superfluid phase, long range even order correlations build-up [171]. Here, density
fluctuations, probing second-order correlations, thus seem to be a natural tool for
studying strongly correlated Fermi gases.
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7 A local interferometer probing spin
fluctuations in a quantum gas

Currently, the research with quantum degenerate Fermi gases is exploring a great va-
riety of strongly correlated many-body regimes such as the pseudo-gap physics [67],
spin-ordering [172], or the Fulde-Ferrell-Larkin-Ovchinnikov phase [88]. These phe-
nomena are driven by pair formation and are characterized by distinctive spin corre-
lations, which may vary in space. Conversely, theoretical and experimental efforts are
directed towards the measurement of spin correlations in Fermi gases, using for exam-
ple linear response [22, 23, 70], or directly through noise measurements [99, 173, 174].
Yet, the quantitative measurement of spin correlations in a trapped gas poses severe
experimental challenges. In order to characterize strong correlations in the ground-
state of interacting many-body systems, it has been recently proposed [30] to use
interferometric methods that have proven successful in quantum optics and allow the
full characterization of a light field that carries information about the systems under
consideration.

In this chapter! we present the in-situ measurement of the spin fluctuations in weakly
and strongly interacting two-component Fermi gases using a shot-noise limited inter-
ferometric technique with a spatial resolution of 1.2 um. We are thus able to directly
probe the correlations present in the many-body state of the system in a spatially
resolved way. The spin fluctuations are directly related to the magnetic susceptibility
of the system via the fluctuation-dissipation theorem as expressed by equation (2.48)
in chapter 2.5 in the theory part of this thesis. We use this relation to deduce the
magnetic susceptibility for both the weakly and the strongly interacting gas.

7.1 Local interferometry

In a two-component Fermi gas consisting of an incoherent mixture of atoms in two
different hyperfine sub-states, the spin polarization in a given volume is defined by
the difference of the atom number in the two states M = Nj — N2. Due to the
hyperfine splitting, the frequency of a light beam that passes through the atoms can

IParts of this chapter and appendix D are adopted from a manuscript in preparation for publi-
cation by J. Meineke, J.-P. Brantut, D. Stadler, T. Miiller, H. Moritz, and T. Esslinger (2011).
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be chosen such that the spin polarization is mapped to the phase shift of the beam.
In particular, the use of a tightly focussed probe beam leads to a stronger coupling
to individual atoms, which enhances the phase shift caused by a single atom [175]
and makes it possible to detect spin fluctuations due to a few atoms only. Most
important, a small probe makes it possible to address specific parts of the gas and
thus to measure the spin polarization locally. To create such a tightly focussed probe
beam, with a waist on the micrometer scale and hence of the order of the Fermi
wavelength, our microscope setup is ideally suited.

7.1.1 Concept of the local interferometer

In order to accurately retrieve the phase-imprinted spin polarization, we place the
quantum gas in one of the arms of an interferometer which allows to determine the
phase shift with shot-noise limited accuracy. The essential idea of our measurements
is best explained by noting the analogy to Young’s double slit experiment. Two tightly
focussed beams of the same frequency, denoted as probe and the local oscillator, are
focussed by our microscope setup to two separate points as shown in Fig. 7.1(a). In
the focal plane, both beams have a Gaussian waist of 1.2 um, defining the dimension
of the local probing region. Outside the focal plane, both beams overlap which
gives rise to an interference pattern that is finally imaged onto a CCD camera. The
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Fig. 7.1: (a) Interferometer beams in the vicinity of the atomic cloud: While
the probe passes through the cloud shown in grey, the local oscillator passes
by the side of it. The beams overlap to give an interference pattern as shown,
which is averaged parallel to the fringes for processing. (b) Optical path used
to separate the two polarizations: Using a quarter-wave retardation plate (A/4)
and two polarizing beam splitters (PBS), we separate the o~ - and ot -polarized
light to obtain two interference patterns on one image. The shown interference
pattern for the o~ component is truncated by the edges of the CCD chip for
technical reasons. This does not influence the precision of the measurement.
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position and visibility of the interference pattern is determined by changes in phase
and amplitude of the probe beam, which passes through the trapped cloud of ®Li
atoms, while the local oscillator does not. The analysis of the interference pattern
thus allows to reconstruct both quadratures, phase and amplitude, of the probe beam,
and to extract information about the local properties of the atomic cloud. The
interferometer beams are created in an inherently phase-stable way, so that both
beams pass through exactly the same optical elements, by using the two-axis acousto-
optical deflector (AOD) described in chapter 5.1. We apply two radio frequencies
differing by 20 MHz along each axis of the AOD. This results in four beams in the
(-15¢ /-15%)-order diffraction order, arranged in square. Two of these beams have the
same frequency, corresponding to the probe beam and the local oscillator, and thus
form the interference pattern on the camera (see Fig. 7.1(a)). This avoids the need
for active stabilization of the interferometer. The other two beams are detuned by
+20 MHz and their interference patterns average out over the duration of the probe
pulses. The intensities of the beams can be controlled via the power in the individual
radio frequencies. Phase stability is ensured by deriving each radio frequency from
the same source for both axes [140].

A second interference pattern, not affected by the atoms but recorded on the same
image, is used to track residual long-term drifts. For this we make use of the birefrin-
gence of the atomic cloud due to the fact that only o~ -polarized light interacts with
the atoms in a magnetic field [131]. As depicted in Fig. 7.1(b), elliptically polarized
light is sent onto the atoms. While only the o~ -polarized component interacts with
the atoms driving the |25 /) to |2P3/3) transition, the ot component passes undis-
turbed. After the atoms, both components are split in two different paths using a
quarter-wave retardation plate and polarizing beam splitters. This leads to two sep-
arate interference patterns on the camera, which are denoted as 0~ - and o1 -pattern
for further reference. An example of the recorded interference patterns is shown in
the lower part of Fig. 7.1(b). Together with a reference image taken without atoms,
this allows us to accurately extract the phase-shift due to the atoms (see appendix D).

7.1.2 Imprinting atomic spin onto light phase

In order to demonstrate how the presence of an atomic cloud affects the light field, we
experimentally determine the phase shift and the optical density as a function of the
light detuning for a thermal Fermi gas containing only the second lowest hyperfine
sub-state |2) of 6Li. For the preparation, we proceed as shown in the previous chapter
and additionally use a so-called p-wave Feshbach resonance at 159 G [48] to remove
the second spin component |1) during the final evaporative cooling. We determine the
phase shift applying a simultaneous sinusoidal fit to the o~ -patterns in the images
with and without atoms. The optical density is determined from the same data by
analyzing the visibility of the interference pattern and thus the amount of absorbed
light (see equation (3.13)). Fig. 7.2 displays the results of this measurement showing
the characteristic asymmetric dispersion curve for the phase shift and the Lorentzian
curve for the optical density, slightly broadened due to the finite linewidth of the
laser and saturation. To fit the data for the phase shift, we use the model ¢ =
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—%ﬁ, where nco100, s and & are the on-resonance optical density, the

saturation parameter and the detuning from the atomic resonance in units of the
linewidth, respectively. The optical density is then given by d = "CC’QIUO m.
Fig. 7.2 shows the results of the fit, where the optical density is calculated using the
results of the fit to the phase with no further adjustable parameters. The measured
data and theory are in agreement, provided the probe duration is ~ 1us and the
intensity limited to less than ~ 107g,;. The use of stronger (longer) pulses leads

to a systematic shift of the measured phases to larger values. Most important, the

measurement proves that the signal detected by the interferometer is directly and
unambiguously relatable to an atomic property, i.e. the spin population, as opposed
to [99]. We also emphasize, that our method to determine the phase shift is by design
insensitive to intensity noise in the probe beam, because the phase shift is encoded
in space. This is in contrast to the case of Mach-Zehnder interferometers or phase
contrast imaging, where the phase is determined from changes in the light intensity.
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Fig. 7.2: Measured phase (blue circles) and optical density (red circles) as
a function of the probe light detuning. The maximum intensity of the probe
beam was I = 1.2 X Igay, with Isat the saturation intensity. The duration of
the probe pulses was 1.2 us. The lines are calculated using the model described
in the text by fitting to the phase data giving nco100 = 3.2 and s = 0.6. The
fitted linewidth is 20% broader than the natural linewidth due to the finite
linewidth of the probe laser.

7.1.3 High-precession at the shot noise limit

Our measurement of the probability distribution of the spin polarization relies on the
faithful mapping of the spin polarization to the phase shift of the probe beam. We
therefore show that photon shot noise limits the precision with which we can measure
the phase of the light field when no atoms are present in the interferometer. For the
determination of the phase fluctuations around a given mean phase, we find that it
is more precise to analyze the change of the correlations between the o~ - and the
ot-pattern in consecutive images. The phase shift is encoded in the displacement
of the zero-crossings of the correlations. This analysis method is also applied in
the spin fluctuation measurements below and described in detail in appendix D.
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Fig. 7.3 shows the phase variance as a function of the photon number and features
the expected power law behavior of the phase fluctuations as a function of the photon
number in the probe beam. Indeed, the measured phase variance is expected to be
82 = niN [176], where 7 is the quantum efficiency for the photon detection and
N is the number of photons in the probe beam. Consequently, using this novel
interferometric technique, the phase shift measured in a single experiment reveals the
spin imbalance (see next section) for a specific realization of a two-component Fermi
gas with the maximum achievable precision, i.e. at the quantum limit.

Intensity [lg4]

10° 10!

_ 101
3 +

o

1

— -2

— 10 +

o

g w=0.8 pm

8 10 3
) w=1.2pum

17}

&

o 10-4 +'

10? 108 104
Photon number

Fig. 7.3: Measured phase variance §¢? (blue circles) as a function of the photon
number in the probe beam determined from 100 measurements for each point.
The red point indicates the phase variance for the intensity at which the spin
polarization measurements were made. Error bars are an uncorrelated sum of
statistical and systematic uncertainties. The orange line shows the expected
phase noise for a quantum efficiency n = 0.6, determined in an independent
measurement. The width of the line corresponds to 20% errors estimated from
the uncertainty of our determination of n. The gray lines indicate the square of
the phase shift expected for a single atom fixed in space at a detuning of half
the atomic linewidth for the indicated 1/e®-waists of the probe beam [175].

7.2 Probing spin fluctuations in a two-component Fermi gas

We use the interferometer to locally probe the spin fluctuations of different quantum
phases in the central region of a balanced two-component Fermi gas, consisting of a
mixture of 6Li in the lowest two hyperfine states, denoted by |1) and |2). This directly
probes the correlations of the many-body state of the system [30]. By choosing a
frequency for the probe light, that is exactly in between the resonances for the states
|1) and |2) (see Fig. 7.4 (b)), the phase shift ¢ measured in a single experiment is

proportional to the local spin polarization m, expressed by ¢ = m Here, ¢ is

)
1454462 "
the detuning from resonance for both state |1) and |2). Repeating this measurement

allows us to reconstruct the full distribution of the spin polarization.
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7.2.1 Spin fluctuations in a weakly interacting Fermi gas

We first measure the distribution of the spin polarization for weakly interacting Fermi
gases at different temperatures. As in the previous chapter, we load a balanced
mixture of 6Li in the states |1) and |2) in a single-beam optical dipole trap with a
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Fig. 7.4: (a) Normalized histograms for the measured phases for weakly in-
teracting gases Tihermal = 1.02(2) Tr (red), Thot = 0.44(5) Tr (violet) and
Teotla = 0.18(2) Tr (blue) as well as a strongly interacting gas of molecules
at T=300nK (green). For the histograms, the respective measurements were
repeated 400 times with a probe duration of 1.2 us and a maximum probe light
intensity of I = 9 Ig,¢. Each measurement corresponds to a single realization
of a Fermi gas, for which a new sample has to be prepared each time. (b)
Phase shift as a function of the detuning for a balanced mixture of °Li. The
dashed line indicates the detuning for the measurement of the spin-polarization.
(c) Relative suppression of the spin fluctuations as a function of the reduced
temperature. Data points are colored identical to (a). The solid line shows
the calculated relative suppression of the spin-polarization, accounting for the
line-of-sight integration and the geometry of the combined trap.
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1/e2-radius of 2241 pum. In addition, a second dipole trap, which runs parallel to the
probe beam and perpendicular to the first dipole trap, is focussed to a 1/e2-radius
of 9um and allows us to prepare the gases at different temperatures but with the
same column density in the probe region. In this combined trap, we prepare weakly
interacting Fermi gases at a scattering length of a = —100ap and with different
temperatures of Tihermal = 1.02(2) Tr, Thot = 0.44(5) Tr and Teoq = 0.18(2) Tr,
where T is the Fermi temperature in the probe region. The column density for the
gas at Tihermal = 1.02(2) T is 20% lower than for the other two gases.

Fig. 7.4(a) shows the normalized histograms, corresponding to the probability distri-
bution of the spin polarization. Comparing the widths of the distributions for the
weakly interacting gases, we find that the distributions are narrower the lower the
temperature of the gas. The distributions show no significant asymmetry and are
well described by a Gaussian function as expected from the large number of atoms
in the probe beam (about 250 in each state). For weakly interacting Fermi gases,
number fluctuations in each hyperfine state are independent, so that fluctuations of
the spin polarization are given by dm? = 5n% + 6n%. As a consequence, when the
temperature is lowered and the gas becomes quantum degenerate, the fluctuations
in each state are reduced because only atoms close to the Fermi energy contribute,
due to the Pauli principle [93]. The measured variances of the spin polarization, in
order of decreasing temperature, are ém?% . = 35(6) um ™%, m2_, = 27(3) yum~*
and 5mgold = 15(3) pum ™%, where the contribution to the variance originating from
photon shot noise nggr = 6.5um~* has been subtracted. This corresponds to a
suppression of the spin fluctuations as compared to a thermal gas having same the
column density by 1.9(2) dB for the hot gas, and 4.5(3) dB for the cold gas. As shown
in Fig 7.4 (c), this is in agreement with the expected values taking into account line-
of-sight integration and the geometry of our combined trap. The agreement between
theory and experiment in Fig. 7.4 (c) can thus also be interpreted as evidence for the
full thermalization of the gas in the dimple trap with the surrounding bath.

7.2.2 Spin fluctuations in a strongly interacting Fermi gas

We now turn to the study of a gas with strong repulsive interactions, prepared close
to the Feshbach resonance with a scattering length of a ~ 7000ag and a temperature
of 300nK (preparation, see chapter 3.7.3). The resulting histogram is displayed in
Fig. 7.4 (a) and shows a distribution of the spin polarization that is significantly
narrower than for the weakly interacting gases. This reflects the fact that for inter-
acting gases correlations are present between the hyperfine states. In particular, for
strong repulsive interactions close to a Feshbach resonance, weakly bound molecules
form. The measured spin fluctuations in such a gas consisting of pairs are created
at the cost of breaking the molecules and are consequently very low. We measure
(Smgair = 5(2) um~4, with the background (5771][2)@r = 7.5um~4 subtracted as be-
fore. This corresponds to a reduction by 9.2(8) dB as compared to a non-interacting
thermal gas. This is lower than the reduction of 18 dB expected for the given scat-
tering length and the waist of the probe beam in our experiment [30]. A possible
explanation are frequency fluctuations of the probe beam. Shot-to-shot frequency

109



7. ALOCAL INTERFEROMETER PROBING SPIN FLUCTUATIONS IN A QUANTUM GAS

fluctuations with a variance of 2 MHz? correspond to apparent spin fluctuations of
5um~—*4. Other reasons for the measured increased fluctuations might be the dissoci-
ation of the molecules due to the scattering of photons and subsequent movement of
the atoms, or a remaining fraction of unpaired atoms.

7.3 Magnetic susceptibility

In analogy to the fluctuation-dissipation relation between the compressibility and
density fluctuations used in the previous chapter and [93], the measured values of
the spin fluctuations can be related to the magnetic susceptibility x. The behavior
of the spin susceptibility as a function of temperature and interaction strength is of
particular interest for the study of phase-transitions to magnetically ordered states,
and hence are currently studied in experiments [99] and theory [16]. The fluctuation-
dissipation theorem is applicable when the probed system can be regarded to be in
grand canonical equilibrium with its surrounding. Due to the column integration in
our experiment, the fluctuation-dissipation theorem then reads kpT'xcol = Adm?2,
where xco1 and A = 7'("!1}8 /2 are the column-integrated magnetic susceptibility and
the area of the probed column, respectively. The latter is determined by the waist
wg of the probe beam. For small volumes and at low temperatures corrections are
expected, because correlations between the probed system and its surrounding cannot
be neglected [177]. These corrections are roughly estimated to be lower than 25%
in our case because of column integration. However, this estimation needs further
detailed investigation.

Fig. 7.5 shows the susceptibility scaled by the column density Xcol/”gol as a function
of temperature. For higher temperatures, the susceptibility of the weakly interacting
Fermi gas decreases as expected, which means that it takes more energy to polarize the
gas. The graph also contains the measured susceptibility for the strongly interacting
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Fig. 7.5: Column integrated magnetic susceptibility scaled by the column den-
sity Xcol/ngol as a function of temperature. The graph shows the corresponding
values for a weakly interacting gas at three different temperatures and also the
measured value for a strongly interacting gas of pairs.
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gas of pairs, being roughly a factor of two smaller than the susceptibility of the
ideal Fermi gas. However, it is presumably much lower since the susceptibility is
supposed to be only due to unpaired atoms which are exponentially suppressed at
low temperatures.

7.4 Summary

In conclusion, we have measured the probability distribution of the local spin polar-
ization in a balanced two-component Fermi gas using a new spatially resolved inter-
ferometric technique. We have measured the suppression of spin fluctuations due to
the Pauli principle of up to 4.5(3)dB for weakly interacting gases and 9.2(8)dB due
to pairing for a strongly interacting gas of molecules. Our method is ideally suited
to study interaction induced correlations in trapped many-body systems, where the
optical density is large. The ability to accurately control the trap depth only in
the probed region facilitates measurements of temperature dependent observables.
In particular, our observations suggest that the phase space density of the Fermi
gas can be locally increased by the additional trap and thermalization occurs even
for moderate interparticle interactions. For measurements of the spin polarization in
two-dimensional systems (see outlook in chapter 8), the focus of the probe beam could
be further reduced, resulting in a larger phase shift per atom, and there would be no
further need for column integration. This should allow the observation of possible
magnetically ordered domains, consisting exclusively of atoms of one state.
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8 Conclusions and outlook

For the last decade, ultracold atomic Fermi gases are increasingly serving as experi-
mental playground to create and study strongly correlated many-body physics with
a great variety of highly tunable parameters. Within the scope of this thesis, a new
level of control on theses systems has been achieved paving the way for a direct, local
access to the underlying many-body physics on a microscopic scale. The experimental
key tool for this advance is a pair of identical high-resolution microscope objectives
which represents the core element of the new apparatus presented in this work.

Employing a high-resolution imaging setup, we have realized the in-situ measurement
of density fluctuations in a fermionic quantum gas and presented the first observation
of the Pauli exclusion principle in real space. In addition, the simultaneous in-situ
measurements of density and density fluctuations allowed us to deduce thermody-
namic quantities of the Fermi gas via the fluctuation-dissipation theorem. We have
established a promising alternative to standard thermometry methods in quantum
gases, demonstrating the first fluctuation-based temperature measurement in cold
quantum gases.

Combining the precision of interferometry with the high spatial resolution of the
microscopes, we have developed a novel shot-noise limited interferometric probe that
enabled us to locally measure spin fluctuations in a weakly and strongly interacting
Fermi gas.

Moreover, our high-resolution microscope setup has been designed for the site-by-site
generation of versatile optical dipole potentials that can be tailored down to below
one micrometer. The presented results on the trapping and detection of ultracold
fermions in such micro-traps provide a novel route towards a local and flexible ma-
nipulation of quantum gases on the length scale of the atomic wave function.

Yet, the full resolution of our microscope setup has not been exploited. For the
presented in-situ measurements of the density and spin fluctuations in the cigar-
shaped 3D Fermi gas, the numerical aperture of the microscope system was decreased
on purpose in order to match the depth of field of the imaging system to the extension
of the atomic cloud along the line of sight. The latter typically amounts to about
20 pm, whereas the maximum numerical aperture corresponds to a depth of view
of only 3 pum. Hence, a stronger confinement of the atom cloud will enable us to
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make use of the full spatial resolution. Currently, we are implementing a so-called
light sheet to strongly confine the atoms along the line of sight of the microscopes
using a repulsive optical potential created by a blue detuned laser at 532nm in a
TEMop; mode [178, 179, 180]. With moderate light power, trap frequencies of some
kHz along the confining axis can be maintained over a region of some ten by ten
micrometers in the imaging plane. In this small region, the temperature and the
chemical potential will be set by the large, unperturbed region of the remaining part
of the cloud which acts as a reservoir. The chemical potential will then be hardly
affected by the confinement, allowing to reach a quasi-2D situation where the chemical
potential is lower than the trapping frequency along the strong confinement. Once
having achieved the 2D regime, the full potential of the microscope setup can be used
to explore emergent many-body phenomena. In the following we will sketch a few of
them.

Not only the mean and variance of density and spin fluctuations can be measured,
yet also higher order moments of the atomic distributions contain important informa-
tion to characterize the quantum state of a many-body system. This "full-counting
statistics" approach is a subject of considerable interest in the field of mesoscopic
physics, and by now has also attracted theoretical and experimental attention in the
field of ultracold atoms [15, 28]. However, current measurements are limited by the
resolution and the detection efficiency of the imaging setup. In that respect, our
microscope setup will be ideally suited.

Physics often changes dramatically when going from three to lower dimensions. For
example in two dimensions, the phase transition of a uniform ideal Bose gas to a
BEC does not exist at finite temperature because thermal and quantum fluctuations
strongly suppress the formation of long-range order. However, for an interacting
2D Bose gas, another type of phase transition, the topological Berezinski-Kosterlitz-
Thouless (BKT) transition, has been predicted and by now become subject of investi-
gations with ultracold quantum gases. A BKT-type phase transition is also expected
for strongly interacting quasi-2D Fermi gas near the Feshbach resonance [181], fea-
turing spontaneously created vortex-antivortex pairs at moderate temperatures [182].
Along the BEC-BCS crossover, these have a typical size of the order of the Fermi
wavelength, which is about the resolution of our microscope, and are thus of particular
interest to be studied with our setup.

Besides measurements of correlation-induced noise properties and the observation of
macroscopic phase transitions in bulk systems, our new setup also holds the unique
potential to cover the full experimental spectrum from single- and few-atom physics
in tightly confining micro-traps to many-body physics in finite optical lattices. An
ensemble of a controlled number of deeply degenerate fermions in a single micro-trap,
like in [183], will be ideally suited to investigate the physics of finite Fermi systems in
nature as for example atomic nuclei. In this context, fundamental questions of few-
body physics may be addressed such as the occurrence of pairing in a finite Fermi
system [184, 185] or the minimum number of fermionic particles needed to form a
superfluid [186].

For the research with ultracold Fermi gases, our apparatus is in the vanguard con-
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cerning single-site resolution and single-site addressability, which otherwise has only
been implemented in experiments working with bosons [5, 7, 36, 37, 187]. As a next
step following the achievement reported on in chapter 5, we may combine an array of
8x8 micro-traps with the previously described 2D confinement in order to generate
a finite isotropic 2D optical lattice. The possible small site separation of below one
micrometer, together with the low mass of 6Li will lead to tunneling amplitudes of
about one kHz. In this lattice, which is localized only in a small region of the large
degenerate cloud, the gas will be surrounded by the cold remaining 3D cloud, leading
to low temperatures, low compared to the interaction strength and even compared
to the tunneling rate. For a half-filled optical lattice, this situation may lead to the
formation of charge density waves, a direct analogue of anti-ferromagnetic ordering
in strongly repulsive Fermi gases [188]. This phase, featuring alternatingly holes
and double occupancy of lattices sites, might then be directly mapped out with the
high-resolution imaging setup.
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A Physical constants

In this thesis, the following physical constants are used:

Property Symbol Value
Speed of light c 299792458 ms—!
Planck constant h 6.6260693(11) - 1034 Js
Planck constant over 27 h 1.054571628(53) - 10734 J s
Fine-structure constant e 7.297352568(24) - 1073
Electric constant €0 8.854187817 - 1012 Fm~!
Elementary charge e 1.60217653(14) - 10719 C
Electron mass Me 9.1093826(16) - 103! kg
Atomic mass constant u 1.66053886(28) - 10727 kg
Boltzmann constant kg 1.3806505(24) - 10723 JK !
Bohr radius ap 0.5291772108(18) - 10~1%m
Bohr magneton UB 9.27400949(80) - 1024 g1
Nuclear magneton UN 5.05078343(43) - 10727 JT !
Electron g-factor ge 2.0023193043718(75)

Table A.1: Physical constants from CODATA [189].
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B Atomic properties of °Li

B.1 Fundamental physical properties of SLi

Property Value
Mass 6.0151214u
Natural abundance 7.6%
Total electronic spin S 1/2
Total nuclear spin I 1
Total nuclear gr-factor -0.0004476540
2P fine structure splitting 10.053044 GHz
2251/2 hyperfine ground state splitting 228.2 MHz
Vacuum Wavelength Ap; 670.992421 nm
Natural linewidth I"'pq 271 X 5.8724 MHz
Vacuum Wavelength A po 670.977338 nm
Natural linewidth I'po 271 X 5.8724 MHz
Saturation intensity Igas of Da-line 2.54 mW/x:m2

(ot-polarized light)

Table B.1: Atomic properties of ®Li [190].



B. ATOMIC PROPERTIES OF LI

B.2 Atomic level structure of SLi
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Fig. B.1: Level structure of the ground (S) and excited (P) states of °Li [190,
191]. Given are the hyperfine spin states F' with F' < |J £ I|, where J is
the coupled electronic and orbital spin and I = 1 is the nuclear spin. The
dashed arrows indicate the transitions used as cooler and repumper for the
magneto-optical trap. The splitting in the 2P3 /5 excited state is of the order
of the natural linewidth I' of the D2-line, which can not be resolved. Energy
splittings are not to scale.



B.3. ZEEMAN SPLITTING OF GROUND AND EXCITED STATE LEVELS

B.3 Zeeman splitting of ground and excited state levels
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Fig. B.2: Zeeman hyperfine levels of the ®Li electronic 252 ground and the
2P3/9 excited state [190, 191]. For large magnetic fields nuclear and electron
spin decouple and optical transitions become closed due to selection rules for
electric dipole transitions. The notation for the states |1) to |6) reflects the
quantum numbers corresponding to the orientation of the hyperfine angular
momentum, the electron spin and the nuclear spin |mp;ms, m;).
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C Noise propagation

In this appendix, we provide the derivative of the noise propagation through the
imaging process, yielding the noise relation between the output signal of the EMCCD
camera and the transmission of probe light as given by equation (6.3) in chapter 6
on the density fluctuations.

Physically, the probing of density fluctuations via absorption imaging consists of
several consecutive processes. Photons sent onto the atomic sample are partially ab-
sorbed and lead to an attenuation of the initial photon number N; expressed by the
transmission factor ¢t of the probe light. The transmitted photon stream N, is reg-
istered by the EMCCD chip, converted into photoelectrons N, and finally displayed
as electronic counts C. Each step is governed by a distinctive stochastic conversion
process. We start with the first noise propagation process when a certain number
of incoming photons N; encounters the atomic cloud causing the transmission of N,
outgoing photons according to N, = t- N;. On average, the mean number of outgoing
photons (N,) is given by

(No) =D p(No) - No= > No-p(Nolt, Ni) - p(Ni) - p(t) = (t) - (N;) . (C.1)
No

N;i,No,t

Here, p(z) denotes the probability for a certain value z of a quantity. The expression
p(Nolt, N;) = (%L) tNo (1—#)Ni—No is the conditional probability to have N, photons
at a given N; and t, following a Bernoulli distribution. Accordingly, we calculate the
expectation value of N2:

(NZ) =) NZep(Noft.Ni) - p(N) - p() = Y (N2)w,.e - P(V:) - P(2)

N;,No,t Nit
= Z(ﬁ NP+ N -t — N; - £%) - p(N;) - p(t)
Nt

= D POt (N)+ > p) £ ((NF) = (V)

= (B (Ni)+ () - (Va)?. (C.2)
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In the second step, we used the fact that the variance of Bernoulli distribution is the
number of trials times the probability of success times the probability of failure. In
addition, for the last transformation we have assumed that the incoming photons are
Poissonian distributed for which holds (N?2) — (N;)? = (N;). Combining equations
(C.1) and (C.2), we obtain the variance (AN,)?

(At)?
()2

(ANG)? = (N2) — (No)? = (No) + (No)? - : (C.3)

The same equation holds for the conversion from photons into photoelectrons by the
EMCCD camera

(At)?
(t)?
Finally, we consider the amplification process from photoelectrons into secondary

electrons ( = counts C) by the EMCCD register. Here, the average gain factor is
g. Given a certain number N, of primary electrons, the probability distribution of

(ANe)? = (Ne) 4 (Ne)? - : (C.4)

counts C' is accurately approximated by [166]

T (Ne— g

CNe—1 Ne

p(C|Ne)) (C.5)

For a fixed number of primary electrons Ne, this distribution has the mean value
(C) = g - N and the variance (AC)? = g2 - Ne. It follows

(€)= C-pCIN -p(N) =Y g+ Ne-p(Ne) =g-(Ne),  (C.6)
Ne,C Ne

and

(€ = Y C?p(CIN-p(N) =D g% Ne-p(Ne)+ g%+ NZ-p(Ne)

Ne,C N N
= g% (Ne) 42 ((ANe)? + (Ne)?) . (c.7)

Hence, the noise relation between the transmission t and the measured count number
C reads

(BC)* = (C)—(O)2 =g® (Ne) +g° - (AN.)?
2
= g-(C)+¢? (<Ne>+<Ne>2 (At?)
2
= 2.0+ (07 B ()
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D Data processing for interferometry

For the determination of the phase fluctuations! in chapter 7, we find it advantageous
to analyze the correlations between the probe signal (o T -polarization) and the refer-
ence signal (ot-polarization) on each image. This allow us to exploit the similarity
of the two interference patterns, and analogous to homodyne techniques to use the
ot-pattern to noiselessly amplify the signal contained in the o~ -pattern. Fig. D.1
illustrates the different steps of this data processing algorithm. The two parts of the
experimental images contain the probe and reference signals (Fig. D.1(a)). A line
sum along the direction of the fringes is first computed, yielding a one dimensional
fringe pattern signal. The right part of the signal is scaled so that the probe and
reference have roughly the same intensity. A filter in Fourier space is then applied to
the full scaled signal, conserving only the Fourier components around the fringe spac-
ing. The precise shape of the filter does not influence the obtained results, provided
the low frequency components are removed, which contain the envelope of the two
fringe patterns and the background. We then compute the autocorrelation function
of the processed fringe pattern. Fig. D.1(b) presents a typical autocorrelation signal.
A fixed spacing is inserted between the probe and reference signal in the processed
fringe pattern before the correlation function is computed. Doing so, the autocorre-
lation function displays two separated parts. The sum of the correlation functions of
the reference with itself and the probe with itself appears at the center. Conversely,
the correlation function of the probe with the reference appears at the sides. The
center part of this probe-reference (¢ - 0~) correlation signal is selected and the
positions of the zero crossings are extracted by linear interpolation of the discrete
signal, as depicted in Fig. D.1(b). The mean position of the zero-crossings is taken
as the position of the probe fringe pattern with respect to the reference. The ratio of
this position to the period of the fringe pattern yields the phase.

Each run of the experiment yields three pictures: one taken in the presence of the
atoms (A1), and two pictures taken in the absence of atoms (A2 and A3). The posi-
tion of the crossings and thus the fringe displacements are measured for each of these
pictures. To obtain the distribution of the fringe displacements, the experiments are
repeated up to 400 times, over about 2 hours. Over this period, slow drifts of the

1Parts of chapter 7 and appendix D are adopted from a manuscript in preparation for publication
by J. Meineke, J.-P. Brantut, D. Stadler, T. Miiller, H. Moritz, and T. Esslinger (2011).
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(b)

Autocorrelation fct.

Raw data

Vertical line sum

Zero
crossings

1
Filtering + normalization

Fig. D.1: Data processing using the correlation method. (a) Raw picture ob-
served on the camera, with the reference signal on the left (¢7) and the probe
signal on the right (67 ). The actual power ratio of the two is 20, but here the
(67) has been re-scaled for demonstration reasons. The signals from the pic-
ture is accumulated in the direction of the fringes, yielding a one-dimensional
fringe pattern. The visibility of the fringes reflects the ratio of the probe to
the local oscillator. The probe signal on the right side has been scaled up, and
the full fringe pattern is spatially filtered leaving only the interference contri-

bution. (b) shows the autocorrelation function of the filtered fringe yielding

+ + ot

o - o~ correlations at both sides, and contributions form o7 - ¢ and o~

- 0~ correlations in the center. In a selected region centered on the left side
of the correlation signal, containing the o7 - ¢~ correlations, the positions of
the zero-crossings of the correlation function are measured.

phase on the atom pictures of up to 5 degrees are observed, most probably due to
temperature variations in the environment. In order to compensate for those drifts,
a sliding average (over 15 runs) of the positions of the crossings on picture A3 is
computed. We take this as a measurement of the drift, and subtract this averaged
signal from the positions measured on pictures Al and A2. This substraction op-
eration amounts to measuring the displacement of each crossing of picture Al with
respect to the corresponding crossing of picture A3, corrected for long term devia-
tions. Taking the average of this corrected quantity over the crossings (i.e. averaging
the position measured for all the patterns), we obtain the relative displacement of
the fringes on pictures Al and A2 compared to A3. The ratio of this mean displace-
ment to the period of the fringes yields the phase shift observed on pictures A1l and
A2 compared to A3. We now have two phase shifts measured for each run of the
experiment, with and without atoms. Thus, we obtain the statistical distribution
of the phase shifts in the presence of the atoms from all the shifts of picture Al,
together with the distribution of shifts on pictures A2, taken under exactly the same
conditions but without atoms. To measure the phase variance due to the atoms, we
subtract the phase variance on picture A2 from the phase variance of picture Al.
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E Alignment of the microscope setup

In the following sections we present a procedure that has proven to allow a comfort-
able and accurate alignment of the microscope setup. The given instruction for use
summarizes the most essential steps in sequence and lists expedient aids.

Preparation

e Set up a pilot beam (collimated beam with a waist of about 1 mm at 671 nm)
on the upper optical breadboard holding the upper microscope.

e Use the last two 2" mirrors in front of the upper microscope to align the pilot
beam to hit the atoms held in the FORT and to be perpendicular to the glass
cell top window simultaneously. To check whether the beam hits the atoms,
observe the blast of atoms along the z-axis imaging or implement a simple
imaging system along the z-axis. The orthogonality to the glass cell window
can be readily verified by monitoring back reflections from the glass cell through
a pinhole.

e Use a flipping mirror or a glass plate on the upper breadboard to send back the
reflections onto a CCD camera. Fix this position!

e Set up both 2"/45° mirror, below the glass cell and in front of the EMCCD
camera. Mount the EMCCD camera (about 900 mm behind glass cell) and
record the pilot beam. Check that the aluminum block below the glass cell is
in the center position. For this, also mount the piezo translation stage ( Tritor)
and the goniometer with a custom made pinhole. Adjust roughly the angle of
the goniometer by putting a mirror on top and mapping the back reflection on
the upper CCD camera.

e Fix the position of the massive aluminum block and the two-axis translation
stage (OWIS) which supports the 2" inch mirror below the glass cell, e.g. using
bedstops from two sides.

 Install the 25 mm polarizing beam splitter cube (PBS) in front of the telephoto
objective (distance to the aluminum block ~ 6cm). Check the orthogonal
orientation via the back reflections.

e Set up a second pilot beam from below. Feed it in via the PBS and overlap it
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with the pilot beam from above. Map the upper pilot beam and/or the glass
cell back reflection of the lower pilot beam onto another CCD camera in the
side port path of the PBS.

Installation of the telephoto objective

o Mount the telephoto objective into the four-axis translation (SPECIAL OP-

TICS) stage attached to the linear translation stage (NEWPORT). Place the
telephoto objective about 450 mm in front of the EMCCD.

Iteratively, align the angles and the transverse position. For the accurate angles,
press a small reflective glass plate against the last lens of the telephoto objective
and overlap the back reflection with the incoming pilot beam. For the transverse
position, re-align the pilot beam onto the fixed position on the EMCCD.

Installation of the lower microscope objective

128

Remove the aluminum block with the 2" mirror, the piezo translation stage and
the goniometer, but leave the two-axis translation stage attached to the optical
table.

Remove the goniometer from the aluminum block and the piezo translation
stage, and screw the lower part of the MACOR tube into the thread of the
goniometer. Put the A\/4 retardation plate on top of the lower MACOR tube.

Insert the microscope objective attached to the upper part of the MACOR tube
into the slot of the lower Feshbach coil.

Attach the lower MACOR tube to the upper part.

Lift the goniometer, the MACOR tubes and the microscope and slide in the
aluminum block. Watch out not do touch the glass cell!

Reassemble the aluminum block, the goniometer and the two-axis translation
stage.

Roughly adjust the focussing of the microscope by turning the MACOR tube
in the goniometer thread. The distance between the microscope objective and
the lower glass cell window is about 1.2 mm.

Align the angle of the lower microscope (via goniometer): Put a thin glass plate
on top of the most upper lens of the objective: Take care when inserting this
plate between the objective and the glass cell. Monitor the back reflection on
the upper CCD camera.

Try to find and image the atoms in the FORT on the EMCCD: Sequentially
change the transverse and axial position of the microscope. Once the atoms are
found, readjust the focussing with the MACOR thread. Then lock the coarse
alignment of the axial position.

Iteratively, align the transverse position (two-axis translation stage and piezo
translation stage) and the tilt of the microscope (goniometer). The accurate



tilt can be mapped by the monitored back reflections from the microscope
lenses on the CCD cameras. A proper position adjustment is most practicable
by overlapping the various back reflections originating from the different lens
surfaces of the microscope on the CCD camera, and also by keeping the image
of the cloud on the EMCCD camera.

e A fine adjustment of the lower microscope can be accomplished by fluorescence
imaging of the trapped cloud in the FORT giving rise to a pronounced contrast
effect.

Installation of the upper microscope objective

e Mount the two-axis translation stage (NEWPORT), the piezo translation stage
and the goniometer on the upper breadboard. Using the pilot beam, do a coarse
adjustment of the transverse position with a pinhole and the tilt via the back
reflection from a mirror placed on top of the goniometer.

¢« Remove the 2" mirror above the glass cell and insert the microscope objective
attached to the MACOR tube into the coil slot.

e Do a coarse adjustment in the axial direction via the goniometer thread (dis-
tance between microscope and glass cell is about 1.2 mm).

¢ As in the case of the lower microscope, the transverse position and the tilt can
be aligned via the various back reflections from the different lens surfaces of the
microscope objective. Try to overlap all back reflections simultaneously onto
the fixed position of the pilot beam on the upper CCD camera.

o Send a large collimated beam (12 mm waist) at 767 nm through the upper mi-
croscope to form a micro-trap. Image the trapped atoms in the micro-trap along
the z-axis. Overlap the micro-trap with the FORT along the z-axis and also
along the z/y- plane. The latter can be accomplished by monitoring the trap
spot on the EMCCD camera. Once the z-position of the micro-trap is fixed,
the lower microscope can be re-aligned in axial direction by focussing onto the
minimum waist of the micro-trap.
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